Aashka Mohite, Karen Ardila, Pattarawut Charatpangoon, Emily Munro, Qingrun Zhang, Quan Long, Charlotte Curtis, M. Ethan MacDonald
{"title":"整合遗传信息以改善英国生物银行的脑年龄差距估计模型。","authors":"Aashka Mohite, Karen Ardila, Pattarawut Charatpangoon, Emily Munro, Qingrun Zhang, Quan Long, Charlotte Curtis, M. Ethan MacDonald","doi":"10.1002/hbm.70331","DOIUrl":null,"url":null,"abstract":"<p>Neurodegeneration occurs when the body's central nervous system becomes impaired as a person ages, which can happen at an accelerated pace. Neurodegeneration impairs quality of life, affecting essential functions, including memory and the ability to self-care. Genetics play an important role in neurodegeneration and longevity. Brain age gap estimation (BrainAGE) is a biomarker that quantifies the difference between a machine learning model-predicted biological age of the brain and the true chronological age for healthy subjects; however, a large portion of the variance remains unaccounted for in these models, attributed to individual differences. This study focuses on predicting the BrainAGE more accurately, aided by genetic information associated with neurodegeneration. To achieve this, a BrainAGE model was developed based on MRI measures, and then the associated genes were determined with a Genome-Wide Association Study. Subsequently, genetic information was incorporated into the models. The incorporation of genetic information yielded improvements in the model performances by 7% to 12%, showing that the incorporation of genetic information can notably reduce unexplained variance. This work helps to define new ways of determining persons susceptible to neurological aging decline and reveals genes for targeted precision medicine therapies.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70331","citationCount":"0","resultStr":"{\"title\":\"Integration of Genetic Information to Improve Brain Age Gap Estimation Models in the UK Biobank\",\"authors\":\"Aashka Mohite, Karen Ardila, Pattarawut Charatpangoon, Emily Munro, Qingrun Zhang, Quan Long, Charlotte Curtis, M. Ethan MacDonald\",\"doi\":\"10.1002/hbm.70331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neurodegeneration occurs when the body's central nervous system becomes impaired as a person ages, which can happen at an accelerated pace. Neurodegeneration impairs quality of life, affecting essential functions, including memory and the ability to self-care. Genetics play an important role in neurodegeneration and longevity. Brain age gap estimation (BrainAGE) is a biomarker that quantifies the difference between a machine learning model-predicted biological age of the brain and the true chronological age for healthy subjects; however, a large portion of the variance remains unaccounted for in these models, attributed to individual differences. This study focuses on predicting the BrainAGE more accurately, aided by genetic information associated with neurodegeneration. To achieve this, a BrainAGE model was developed based on MRI measures, and then the associated genes were determined with a Genome-Wide Association Study. Subsequently, genetic information was incorporated into the models. The incorporation of genetic information yielded improvements in the model performances by 7% to 12%, showing that the incorporation of genetic information can notably reduce unexplained variance. This work helps to define new ways of determining persons susceptible to neurological aging decline and reveals genes for targeted precision medicine therapies.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 14\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70331\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70331\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70331","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Integration of Genetic Information to Improve Brain Age Gap Estimation Models in the UK Biobank
Neurodegeneration occurs when the body's central nervous system becomes impaired as a person ages, which can happen at an accelerated pace. Neurodegeneration impairs quality of life, affecting essential functions, including memory and the ability to self-care. Genetics play an important role in neurodegeneration and longevity. Brain age gap estimation (BrainAGE) is a biomarker that quantifies the difference between a machine learning model-predicted biological age of the brain and the true chronological age for healthy subjects; however, a large portion of the variance remains unaccounted for in these models, attributed to individual differences. This study focuses on predicting the BrainAGE more accurately, aided by genetic information associated with neurodegeneration. To achieve this, a BrainAGE model was developed based on MRI measures, and then the associated genes were determined with a Genome-Wide Association Study. Subsequently, genetic information was incorporated into the models. The incorporation of genetic information yielded improvements in the model performances by 7% to 12%, showing that the incorporation of genetic information can notably reduce unexplained variance. This work helps to define new ways of determining persons susceptible to neurological aging decline and reveals genes for targeted precision medicine therapies.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.