Federica Diofano , Chidinma Amadi , Larissa Hartmann , Bernd M. Gahr , Karolina Weinmann-Emhardt , Wolfgang Rottbauer , Steffen Just
{"title":"smyd1介导的肌球蛋白重链(MHC)赖氨酸K35的单甲基化调节斑马鱼和人类ipsc来源的心肌细胞的肌小体组装和稳态。","authors":"Federica Diofano , Chidinma Amadi , Larissa Hartmann , Bernd M. Gahr , Karolina Weinmann-Emhardt , Wolfgang Rottbauer , Steffen Just","doi":"10.1016/j.yjmcc.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>The SMYD family comprises a distinct class of lysine methyltransferases (KMTases) that methylate both histone and non-histone proteins. Among its five members (SMYD1–5), SMYD1 has been identified as a cardiac and skeletal muscle-specific KMTase that interacts with Myosin, in coordination with Unc45b and Hsp90a, to regulate thick filament assembly. However, the precise mechanism by which SMYD1 orchestrates Myosin assembly remains largely unknown.</div><div>Here, we demonstrate that SMYD1 physically associates with the N-terminal region of several myosin heavy chain (MyHC) isoforms and specifically catalyzes the mono-methylation of MyHC at lysine 35 (K35). Methylated MyHC is correctly incorporated into sarcomeres, whereas unmethylated MyHC in Smyd1-deficient zebrafish undergoes degradation <em>via</em> the ubiquitin-proteasome system (UPS), leading to defective thick filament assembly. Although UPS inhibition with MG132 restores Myosin levels in Smyd1-deficient zebrafish embryos, proper thick filament assembly remains impaired due to the absence of K35 MyHC mono-methylation.</div><div>Similar to zebrafish striated muscle cells, SMYD1-mediated MyHC methylation is essential for thick filament assembly but also homeostasis in human cardiomyocytes, indicating a conserved cross-species mechanism of Myosin regulation, first described nearly 40 years ago. Further research is now required to explore the therapeutic potential of targeting this pathway in cardiomyopathies and skeletal muscle disorders.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"208 ","pages":"Pages 74-84"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMYD1-mediated mono-methylation of lysine K35 of sarcomeric myosin heavy chain (MHC) regulates sarcomere assembly and homeostasis in zebrafish and human iPSC-derived cardiomyocytes\",\"authors\":\"Federica Diofano , Chidinma Amadi , Larissa Hartmann , Bernd M. Gahr , Karolina Weinmann-Emhardt , Wolfgang Rottbauer , Steffen Just\",\"doi\":\"10.1016/j.yjmcc.2025.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The SMYD family comprises a distinct class of lysine methyltransferases (KMTases) that methylate both histone and non-histone proteins. Among its five members (SMYD1–5), SMYD1 has been identified as a cardiac and skeletal muscle-specific KMTase that interacts with Myosin, in coordination with Unc45b and Hsp90a, to regulate thick filament assembly. However, the precise mechanism by which SMYD1 orchestrates Myosin assembly remains largely unknown.</div><div>Here, we demonstrate that SMYD1 physically associates with the N-terminal region of several myosin heavy chain (MyHC) isoforms and specifically catalyzes the mono-methylation of MyHC at lysine 35 (K35). Methylated MyHC is correctly incorporated into sarcomeres, whereas unmethylated MyHC in Smyd1-deficient zebrafish undergoes degradation <em>via</em> the ubiquitin-proteasome system (UPS), leading to defective thick filament assembly. Although UPS inhibition with MG132 restores Myosin levels in Smyd1-deficient zebrafish embryos, proper thick filament assembly remains impaired due to the absence of K35 MyHC mono-methylation.</div><div>Similar to zebrafish striated muscle cells, SMYD1-mediated MyHC methylation is essential for thick filament assembly but also homeostasis in human cardiomyocytes, indicating a conserved cross-species mechanism of Myosin regulation, first described nearly 40 years ago. Further research is now required to explore the therapeutic potential of targeting this pathway in cardiomyopathies and skeletal muscle disorders.</div></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"208 \",\"pages\":\"Pages 74-84\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282825001622\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825001622","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
SMYD1-mediated mono-methylation of lysine K35 of sarcomeric myosin heavy chain (MHC) regulates sarcomere assembly and homeostasis in zebrafish and human iPSC-derived cardiomyocytes
The SMYD family comprises a distinct class of lysine methyltransferases (KMTases) that methylate both histone and non-histone proteins. Among its five members (SMYD1–5), SMYD1 has been identified as a cardiac and skeletal muscle-specific KMTase that interacts with Myosin, in coordination with Unc45b and Hsp90a, to regulate thick filament assembly. However, the precise mechanism by which SMYD1 orchestrates Myosin assembly remains largely unknown.
Here, we demonstrate that SMYD1 physically associates with the N-terminal region of several myosin heavy chain (MyHC) isoforms and specifically catalyzes the mono-methylation of MyHC at lysine 35 (K35). Methylated MyHC is correctly incorporated into sarcomeres, whereas unmethylated MyHC in Smyd1-deficient zebrafish undergoes degradation via the ubiquitin-proteasome system (UPS), leading to defective thick filament assembly. Although UPS inhibition with MG132 restores Myosin levels in Smyd1-deficient zebrafish embryos, proper thick filament assembly remains impaired due to the absence of K35 MyHC mono-methylation.
Similar to zebrafish striated muscle cells, SMYD1-mediated MyHC methylation is essential for thick filament assembly but also homeostasis in human cardiomyocytes, indicating a conserved cross-species mechanism of Myosin regulation, first described nearly 40 years ago. Further research is now required to explore the therapeutic potential of targeting this pathway in cardiomyopathies and skeletal muscle disorders.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.