{"title":"解码心脏成熟程序:来自RNA剪接调控的见解。","authors":"Woan Ting Tay, Yibin Wang","doi":"10.1007/s11886-025-02271-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Cardiomyocyte postnatal maturation is a critical step of the mammalian heart development continuum, involving a myriad of phenotypic changes at morphological, molecular, and functional levels. While the phenotypic hallmarks of cardiac maturation are well characterized, the molecular mechanisms that govern this maturation process are still poorly defined. This review aims to explore the recent findings on how post-transcriptional regulations orchestrate the fetal-to-adult cardiomyocyte transition and to highlight their clinical implications for cardiac diseases and regeneration medicine.</p><p><strong>Recent findings: </strong>The molecular regulations of cardiac maturation are distinct from the gene regulatory network implicated in embryonic stages of cardiac development. RNA alternative splicing and the resulting isoform switching events are significant part of the post-transcriptional reprogramming during the transitional stage of maturation, driving functional refinement through a network of RNA-binding proteins. Cardiomyocytes undergo significant changes in structure, physiology, metabolic activity, and proliferative capacities during fetal to adult maturation. Recent findings highlight the importance of post-transcriptional regulation in this process, in particular RNA alternative splicing and isoform switch. Understanding the post-transcriptional regulatory mechanisms, including key molecular players that contribute to the fetal-to-adult transition, can provide a new conceptual framework for cardiac development, diseases, and regenerative medicine.</p>","PeriodicalId":10829,"journal":{"name":"Current Cardiology Reports","volume":"27 1","pages":"135"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Cardiac Maturation Program: Insights from RNA Splicing Regulation.\",\"authors\":\"Woan Ting Tay, Yibin Wang\",\"doi\":\"10.1007/s11886-025-02271-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Cardiomyocyte postnatal maturation is a critical step of the mammalian heart development continuum, involving a myriad of phenotypic changes at morphological, molecular, and functional levels. While the phenotypic hallmarks of cardiac maturation are well characterized, the molecular mechanisms that govern this maturation process are still poorly defined. This review aims to explore the recent findings on how post-transcriptional regulations orchestrate the fetal-to-adult cardiomyocyte transition and to highlight their clinical implications for cardiac diseases and regeneration medicine.</p><p><strong>Recent findings: </strong>The molecular regulations of cardiac maturation are distinct from the gene regulatory network implicated in embryonic stages of cardiac development. RNA alternative splicing and the resulting isoform switching events are significant part of the post-transcriptional reprogramming during the transitional stage of maturation, driving functional refinement through a network of RNA-binding proteins. Cardiomyocytes undergo significant changes in structure, physiology, metabolic activity, and proliferative capacities during fetal to adult maturation. Recent findings highlight the importance of post-transcriptional regulation in this process, in particular RNA alternative splicing and isoform switch. Understanding the post-transcriptional regulatory mechanisms, including key molecular players that contribute to the fetal-to-adult transition, can provide a new conceptual framework for cardiac development, diseases, and regenerative medicine.</p>\",\"PeriodicalId\":10829,\"journal\":{\"name\":\"Current Cardiology Reports\",\"volume\":\"27 1\",\"pages\":\"135\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Cardiology Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11886-025-02271-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11886-025-02271-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Decoding Cardiac Maturation Program: Insights from RNA Splicing Regulation.
Purpose of review: Cardiomyocyte postnatal maturation is a critical step of the mammalian heart development continuum, involving a myriad of phenotypic changes at morphological, molecular, and functional levels. While the phenotypic hallmarks of cardiac maturation are well characterized, the molecular mechanisms that govern this maturation process are still poorly defined. This review aims to explore the recent findings on how post-transcriptional regulations orchestrate the fetal-to-adult cardiomyocyte transition and to highlight their clinical implications for cardiac diseases and regeneration medicine.
Recent findings: The molecular regulations of cardiac maturation are distinct from the gene regulatory network implicated in embryonic stages of cardiac development. RNA alternative splicing and the resulting isoform switching events are significant part of the post-transcriptional reprogramming during the transitional stage of maturation, driving functional refinement through a network of RNA-binding proteins. Cardiomyocytes undergo significant changes in structure, physiology, metabolic activity, and proliferative capacities during fetal to adult maturation. Recent findings highlight the importance of post-transcriptional regulation in this process, in particular RNA alternative splicing and isoform switch. Understanding the post-transcriptional regulatory mechanisms, including key molecular players that contribute to the fetal-to-adult transition, can provide a new conceptual framework for cardiac development, diseases, and regenerative medicine.
期刊介绍:
The aim of this journal is to provide timely perspectives from experts on current advances in cardiovascular medicine. We also seek to provide reviews that highlight the most important recently published papers selected from the wealth of available cardiovascular literature.
We accomplish this aim by appointing key authorities in major subject areas across the discipline. Section editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year. An Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research. We also provide commentaries from well-known figures in the field.