Tianyi Pan, Hwashin Hyun Shin, Glen McGee, Alex Stringer
{"title":"利用惩罚样条的广义分布滞后非线性模型估计累积暴露与健康之间的关系。","authors":"Tianyi Pan, Hwashin Hyun Shin, Glen McGee, Alex Stringer","doi":"10.1093/biomtc/ujaf116","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying associations between short-term exposure to ambient air pollution and health outcomes is an important public health priority. Many studies have investigated the association considering delayed effects within the past few days. Adaptive cumulative exposure distributed lag non-linear models (ACE-DLNMs) quantify associations between health outcomes and cumulative exposure that is specified in a data-adaptive way. While the ACE-DLNM framework is highly interpretable, it is limited to continuous outcomes and does not scale well to large datasets. Motivated by a large analysis of daily pollution and respiratory hospitalization counts in Canada between 2001 and 2018, we propose a generalized ACE-DLNM incorporating penalized splines, improving upon existing ACE-DLNM methods to accommodate general response types. We then develop a computationally efficient estimation strategy based on profile likelihood and Laplace approximate marginal likelihood with Newton-type methods. We demonstrate the performance and practical advantages of the proposed method through simulations. In application to the motivating analysis, the proposed method yields more stable inferences compared to generalized additive models with fixed exposures, while retaining interpretability.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating associations between cumulative exposure and health via generalized distributed lag non-linear models using penalized splines.\",\"authors\":\"Tianyi Pan, Hwashin Hyun Shin, Glen McGee, Alex Stringer\",\"doi\":\"10.1093/biomtc/ujaf116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantifying associations between short-term exposure to ambient air pollution and health outcomes is an important public health priority. Many studies have investigated the association considering delayed effects within the past few days. Adaptive cumulative exposure distributed lag non-linear models (ACE-DLNMs) quantify associations between health outcomes and cumulative exposure that is specified in a data-adaptive way. While the ACE-DLNM framework is highly interpretable, it is limited to continuous outcomes and does not scale well to large datasets. Motivated by a large analysis of daily pollution and respiratory hospitalization counts in Canada between 2001 and 2018, we propose a generalized ACE-DLNM incorporating penalized splines, improving upon existing ACE-DLNM methods to accommodate general response types. We then develop a computationally efficient estimation strategy based on profile likelihood and Laplace approximate marginal likelihood with Newton-type methods. We demonstrate the performance and practical advantages of the proposed method through simulations. In application to the motivating analysis, the proposed method yields more stable inferences compared to generalized additive models with fixed exposures, while retaining interpretability.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf116\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Estimating associations between cumulative exposure and health via generalized distributed lag non-linear models using penalized splines.
Quantifying associations between short-term exposure to ambient air pollution and health outcomes is an important public health priority. Many studies have investigated the association considering delayed effects within the past few days. Adaptive cumulative exposure distributed lag non-linear models (ACE-DLNMs) quantify associations between health outcomes and cumulative exposure that is specified in a data-adaptive way. While the ACE-DLNM framework is highly interpretable, it is limited to continuous outcomes and does not scale well to large datasets. Motivated by a large analysis of daily pollution and respiratory hospitalization counts in Canada between 2001 and 2018, we propose a generalized ACE-DLNM incorporating penalized splines, improving upon existing ACE-DLNM methods to accommodate general response types. We then develop a computationally efficient estimation strategy based on profile likelihood and Laplace approximate marginal likelihood with Newton-type methods. We demonstrate the performance and practical advantages of the proposed method through simulations. In application to the motivating analysis, the proposed method yields more stable inferences compared to generalized additive models with fixed exposures, while retaining interpretability.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.