表面工程mno2 @Au@ZIF-67分级催化剂用于酸触发的抗菌治疗和感染伤口愈合。

IF 5.6 2区 医学 Q1 BIOPHYSICS
Mengmeng Xu , Yuan Liu , Zhe Tang , Xiaolin Yu , Li Gao , Bo Yang , Yan Wang , Xuehui Dong , Qianqian Yu , LinGe Wang
{"title":"表面工程mno2 @Au@ZIF-67分级催化剂用于酸触发的抗菌治疗和感染伤口愈合。","authors":"Mengmeng Xu ,&nbsp;Yuan Liu ,&nbsp;Zhe Tang ,&nbsp;Xiaolin Yu ,&nbsp;Li Gao ,&nbsp;Bo Yang ,&nbsp;Yan Wang ,&nbsp;Xuehui Dong ,&nbsp;Qianqian Yu ,&nbsp;LinGe Wang","doi":"10.1016/j.colsurfb.2025.115145","DOIUrl":null,"url":null,"abstract":"<div><div>Rational surface engineering of nanocatalysts offers new solutions against antibiotic-resistant infections. We designed and fabricated hierarchical MnO₂@Au@ZIF-67 nanoparticles (NPs) with triple interfacial functionalities for synergistic antibacterial therapy. The acid-responsive ZIF-67 surface degrades in infected wounds, releasing Co²⁺ to catalyze •OH generation via Fenton-like reactions at the material-bacteria interface. Simultaneously, ultrasmall Au surfaces deplete glucose through oxidase-mimetic catalysis, producing gluconic acid that accelerates ZIF-67 dissolution. The MnO₂ core surface decomposes H₂O₂ to supply O₂, enhancing Au catalysis and alleviating hypoxia. Comprehensive surface characterization (TEM, SEM, XPS, XRD) confirmed structural integrity and reactive sites. <em>In vitro</em>, the NPs achieved &gt; 99 % bacterial killing <em>(S. aureus/E. coli</em>) through ROS-mediated membrane disruption (validated by SEM/CLSM). <em>In vivo</em>, they enabled 98.45 % bacterial clearance and accelerated wound healing via collagen reorganization (H&amp;E/Masson staining). This surface-engineered platform demonstrates how interfacial catalytic cascades can be harnessed for effective non-antibiotic antimicrobial applications.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"257 ","pages":"Article 115145"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-engineered MnO₂@Au@ZIF-67 hierarchical catalysts for acid-triggered antibacterial therapy and infected wound healing\",\"authors\":\"Mengmeng Xu ,&nbsp;Yuan Liu ,&nbsp;Zhe Tang ,&nbsp;Xiaolin Yu ,&nbsp;Li Gao ,&nbsp;Bo Yang ,&nbsp;Yan Wang ,&nbsp;Xuehui Dong ,&nbsp;Qianqian Yu ,&nbsp;LinGe Wang\",\"doi\":\"10.1016/j.colsurfb.2025.115145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rational surface engineering of nanocatalysts offers new solutions against antibiotic-resistant infections. We designed and fabricated hierarchical MnO₂@Au@ZIF-67 nanoparticles (NPs) with triple interfacial functionalities for synergistic antibacterial therapy. The acid-responsive ZIF-67 surface degrades in infected wounds, releasing Co²⁺ to catalyze •OH generation via Fenton-like reactions at the material-bacteria interface. Simultaneously, ultrasmall Au surfaces deplete glucose through oxidase-mimetic catalysis, producing gluconic acid that accelerates ZIF-67 dissolution. The MnO₂ core surface decomposes H₂O₂ to supply O₂, enhancing Au catalysis and alleviating hypoxia. Comprehensive surface characterization (TEM, SEM, XPS, XRD) confirmed structural integrity and reactive sites. <em>In vitro</em>, the NPs achieved &gt; 99 % bacterial killing <em>(S. aureus/E. coli</em>) through ROS-mediated membrane disruption (validated by SEM/CLSM). <em>In vivo</em>, they enabled 98.45 % bacterial clearance and accelerated wound healing via collagen reorganization (H&amp;E/Masson staining). This surface-engineered platform demonstrates how interfacial catalytic cascades can be harnessed for effective non-antibiotic antimicrobial applications.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"257 \",\"pages\":\"Article 115145\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525006526\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525006526","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

合理的纳米催化剂表面工程为抗抗生素耐药感染提供了新的解决方案。我们设计并制造了具有三重界面功能的层次化MnO₂@Au@ZIF-67纳米颗粒(NPs),用于协同抗菌治疗。酸敏感的ZIF-67表面在感染的伤口中降解,释放Co 2⁺在材料-细菌界面上通过芬顿样反应催化•OH生成。同时,超小的金表面通过模拟氧化酶的催化作用消耗葡萄糖,产生葡萄糖酸,加速ZIF-67的溶解。MnO₂核心表面分解h2o₂供给O₂,增强Au催化作用,缓解缺氧。综合表面表征(TEM, SEM, XPS, XRD)证实了结构的完整性和活性位点。在体外,NPs达到> 99 %的细菌杀灭率(金黄色葡萄球菌/E)。通过ros介导的膜破坏(通过SEM/CLSM验证)。在体内,它们使98.45% %的细菌清除率,并通过胶原重组加速伤口愈合(H&E/Masson染色)。这个表面工程平台展示了如何利用界面催化级联进行有效的非抗生素抗菌应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface-engineered MnO₂@Au@ZIF-67 hierarchical catalysts for acid-triggered antibacterial therapy and infected wound healing
Rational surface engineering of nanocatalysts offers new solutions against antibiotic-resistant infections. We designed and fabricated hierarchical MnO₂@Au@ZIF-67 nanoparticles (NPs) with triple interfacial functionalities for synergistic antibacterial therapy. The acid-responsive ZIF-67 surface degrades in infected wounds, releasing Co²⁺ to catalyze •OH generation via Fenton-like reactions at the material-bacteria interface. Simultaneously, ultrasmall Au surfaces deplete glucose through oxidase-mimetic catalysis, producing gluconic acid that accelerates ZIF-67 dissolution. The MnO₂ core surface decomposes H₂O₂ to supply O₂, enhancing Au catalysis and alleviating hypoxia. Comprehensive surface characterization (TEM, SEM, XPS, XRD) confirmed structural integrity and reactive sites. In vitro, the NPs achieved > 99 % bacterial killing (S. aureus/E. coli) through ROS-mediated membrane disruption (validated by SEM/CLSM). In vivo, they enabled 98.45 % bacterial clearance and accelerated wound healing via collagen reorganization (H&E/Masson staining). This surface-engineered platform demonstrates how interfacial catalytic cascades can be harnessed for effective non-antibiotic antimicrobial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信