{"title":"急性全身免疫刺激通过干扰素诱导的跨膜蛋白3诱导成年雄性小鼠认知障碍和快感缺乏。","authors":"Wenjun Zhu , Akira Sobue , Rinako Tanaka , Kazuhiro Hada , Daisuke Ibi , Yue Liu , Tetsuo Matsuzaki , Taku Nagai , Toshitaka Nabeshima , Kozo Kaibuchi , Norio Ozaki , Hiroyuki Mizoguchi , Hiroaki Ikesue , Kiyofumi Yamada","doi":"10.1016/j.bbr.2025.115832","DOIUrl":null,"url":null,"abstract":"<div><div>Systemic immune challenge can also cause neuropsychiatric abnormalities. Interferon-induced transmembrane protein 3 (IFITM3) plays a crucial role in cellular immune defense. Previously, we have demonstrated that IFITM3 affects neurodevelopment during the early developmental stage in mice, acting through innate immune activation. However, the pathophysiological significance of IFITM3 in immune system activation in adulthood remains unclear. To address this issue, we aimed to analyze the expression level of IFITM3 in the brain and the behavioral abnormalities in polyriboinosinic-polyribocytidylic acid (polyI:C)-treated adult male C57/BL6J wild-type (WT) and <em>Ifitm3</em><sup>-/-</sup> mice. The expression levels of <em>Ifitm3</em> mRNA and protein were significantly upregulated in the medial prefrontal cortex (mPFC), striatum, and hippocampus 24 h after polyI:C treatment in WT mice compared to saline-treated control mice. Furthermore, behavioral experiments revealed that polyI:C treatment induced cognitive dysfunction and anhedonia in WT mice, whereas <em>Ifitm3</em><sup><em>-/-</em></sup> mice were resistant to these disorders. In conclusion, our results demonstrated that in adult mice, immune activation following polyI:C treatment may induce cognitive dysfunction and anhedonia through IFITM3 upregulation in the brain. These results suggest that IFITM3 is an attractive therapeutic target for neuropsychiatric dysfunction following immune activation in adulthood.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"496 ","pages":"Article 115832"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute systemic immune challenge induces cognitive impairments and anhedonia through interferon-induced transmembrane protein 3 in adult male mice\",\"authors\":\"Wenjun Zhu , Akira Sobue , Rinako Tanaka , Kazuhiro Hada , Daisuke Ibi , Yue Liu , Tetsuo Matsuzaki , Taku Nagai , Toshitaka Nabeshima , Kozo Kaibuchi , Norio Ozaki , Hiroyuki Mizoguchi , Hiroaki Ikesue , Kiyofumi Yamada\",\"doi\":\"10.1016/j.bbr.2025.115832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Systemic immune challenge can also cause neuropsychiatric abnormalities. Interferon-induced transmembrane protein 3 (IFITM3) plays a crucial role in cellular immune defense. Previously, we have demonstrated that IFITM3 affects neurodevelopment during the early developmental stage in mice, acting through innate immune activation. However, the pathophysiological significance of IFITM3 in immune system activation in adulthood remains unclear. To address this issue, we aimed to analyze the expression level of IFITM3 in the brain and the behavioral abnormalities in polyriboinosinic-polyribocytidylic acid (polyI:C)-treated adult male C57/BL6J wild-type (WT) and <em>Ifitm3</em><sup>-/-</sup> mice. The expression levels of <em>Ifitm3</em> mRNA and protein were significantly upregulated in the medial prefrontal cortex (mPFC), striatum, and hippocampus 24 h after polyI:C treatment in WT mice compared to saline-treated control mice. Furthermore, behavioral experiments revealed that polyI:C treatment induced cognitive dysfunction and anhedonia in WT mice, whereas <em>Ifitm3</em><sup><em>-/-</em></sup> mice were resistant to these disorders. In conclusion, our results demonstrated that in adult mice, immune activation following polyI:C treatment may induce cognitive dysfunction and anhedonia through IFITM3 upregulation in the brain. These results suggest that IFITM3 is an attractive therapeutic target for neuropsychiatric dysfunction following immune activation in adulthood.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\"496 \",\"pages\":\"Article 115832\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016643282500419X\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016643282500419X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Acute systemic immune challenge induces cognitive impairments and anhedonia through interferon-induced transmembrane protein 3 in adult male mice
Systemic immune challenge can also cause neuropsychiatric abnormalities. Interferon-induced transmembrane protein 3 (IFITM3) plays a crucial role in cellular immune defense. Previously, we have demonstrated that IFITM3 affects neurodevelopment during the early developmental stage in mice, acting through innate immune activation. However, the pathophysiological significance of IFITM3 in immune system activation in adulthood remains unclear. To address this issue, we aimed to analyze the expression level of IFITM3 in the brain and the behavioral abnormalities in polyriboinosinic-polyribocytidylic acid (polyI:C)-treated adult male C57/BL6J wild-type (WT) and Ifitm3-/- mice. The expression levels of Ifitm3 mRNA and protein were significantly upregulated in the medial prefrontal cortex (mPFC), striatum, and hippocampus 24 h after polyI:C treatment in WT mice compared to saline-treated control mice. Furthermore, behavioral experiments revealed that polyI:C treatment induced cognitive dysfunction and anhedonia in WT mice, whereas Ifitm3-/- mice were resistant to these disorders. In conclusion, our results demonstrated that in adult mice, immune activation following polyI:C treatment may induce cognitive dysfunction and anhedonia through IFITM3 upregulation in the brain. These results suggest that IFITM3 is an attractive therapeutic target for neuropsychiatric dysfunction following immune activation in adulthood.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.