mof改性隔膜中双官能团对锂离子高效传输和锂硫电池多硫管理的协同效应

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zheng Liu, Wanchang Feng, Haoyang Xu, Zilin Yang, Wenting Li, Mohsen Shakouri, Hsiao-Chien Chen, Fan Zhang, Huan Pang
{"title":"mof改性隔膜中双官能团对锂离子高效传输和锂硫电池多硫管理的协同效应","authors":"Zheng Liu, Wanchang Feng, Haoyang Xu, Zilin Yang, Wenting Li, Mohsen Shakouri, Hsiao-Chien Chen, Fan Zhang, Huan Pang","doi":"10.1002/advs.202515034","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-sulfur batteries (LSBs) have been regarded as an attractive candidate for future energy storage systems owing to their exceptionally high energy density. However, the further application of LSBs is faced with critical challenges such as the intrinsic insulation of sulfur and the shuttle effect of soluble lithium polysulfides (LiPS). To overcome these problems, a dual functional metal-organic framework (UIO-66-NH<sub>2</sub>-HSO<sub>3</sub>) modified separator is proposed, strategically implemented to examine the dual functionality in anchoring LiPS and facilitating Li<sup>+</sup> transport. Theoretical calculations indicated that the Li<sup>+</sup> diffusion kinetics and LiPS adsorption ability are synergistically boosted by the dual-functional groups in the framework. The -HSO<sub>3</sub> demonstrates high affinity for capturing LiPS species while simultaneously repulsing polysulfide anions. Conversely, -NH<sub>2</sub> effectively immobilizes these anionic species. Additionally, the lower LUMO energy level of NH<sub>2</sub>-H<sub>2</sub>BDC and the higher HOMO energy level of HSO<sub>3</sub>-H<sub>2</sub>BDC significantly accelerate the reaction kinetics of LSBs. Electrochemical assessments revealed that the UIO-66-NH<sub>2</sub>-HSO<sub>3</sub>@PP composite delivers ultra-high rate capability and long-term cycling durability, surpassing most of the reported results. In situ spectroscopic analysis established that the UIO-66-NH<sub>2</sub>-HSO<sub>3</sub>@PP facilitates homogeneous lithium-ion migration while mitigating polysulfide shuttling. This study provides a theoretical foundation for the rational design of multifunctional MOFs membranes as advanced separators for high-performance LSBs.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e15034"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Effect of Dual-Functional Groups in MOF-Modified Separators for Efficient Lithium-Ion Transport and Polysulfide Management of Lithium-Sulfur Batteries.\",\"authors\":\"Zheng Liu, Wanchang Feng, Haoyang Xu, Zilin Yang, Wenting Li, Mohsen Shakouri, Hsiao-Chien Chen, Fan Zhang, Huan Pang\",\"doi\":\"10.1002/advs.202515034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lithium-sulfur batteries (LSBs) have been regarded as an attractive candidate for future energy storage systems owing to their exceptionally high energy density. However, the further application of LSBs is faced with critical challenges such as the intrinsic insulation of sulfur and the shuttle effect of soluble lithium polysulfides (LiPS). To overcome these problems, a dual functional metal-organic framework (UIO-66-NH<sub>2</sub>-HSO<sub>3</sub>) modified separator is proposed, strategically implemented to examine the dual functionality in anchoring LiPS and facilitating Li<sup>+</sup> transport. Theoretical calculations indicated that the Li<sup>+</sup> diffusion kinetics and LiPS adsorption ability are synergistically boosted by the dual-functional groups in the framework. The -HSO<sub>3</sub> demonstrates high affinity for capturing LiPS species while simultaneously repulsing polysulfide anions. Conversely, -NH<sub>2</sub> effectively immobilizes these anionic species. Additionally, the lower LUMO energy level of NH<sub>2</sub>-H<sub>2</sub>BDC and the higher HOMO energy level of HSO<sub>3</sub>-H<sub>2</sub>BDC significantly accelerate the reaction kinetics of LSBs. Electrochemical assessments revealed that the UIO-66-NH<sub>2</sub>-HSO<sub>3</sub>@PP composite delivers ultra-high rate capability and long-term cycling durability, surpassing most of the reported results. In situ spectroscopic analysis established that the UIO-66-NH<sub>2</sub>-HSO<sub>3</sub>@PP facilitates homogeneous lithium-ion migration while mitigating polysulfide shuttling. This study provides a theoretical foundation for the rational design of multifunctional MOFs membranes as advanced separators for high-performance LSBs.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e15034\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202515034\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202515034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池由于其超高的能量密度而被认为是未来储能系统的一个有吸引力的候选者。然而,LSBs的进一步应用面临着硫的固有绝缘性和可溶性多硫化锂(LiPS)的穿梭效应等关键挑战。为了克服这些问题,研究人员提出了一种双功能金属-有机框架(UIO-66-NH2-HSO3)改性分离器,并对其在锚定LiPS和促进Li+运输方面的双重功能进行了研究。理论计算表明,框架中的双官能团对Li+的扩散动力学和Li+的吸附能力有协同作用。hso3表现出对lip的高亲和力,同时排斥多硫阴离子。相反,-NH2有效地固定了这些阴离子。NH2-H2BDC较低的LUMO能级和HSO3-H2BDC较高的HOMO能级显著加快了LSBs的反应动力学。电化学评估表明,UIO-66-NH2-HSO3@PP复合材料具有超高倍率性能和长期循环耐久性,超过了大多数报道的结果。原位光谱分析证实UIO-66-NH2-HSO3@PP促进了锂离子的均匀迁移,同时减轻了多硫化物的穿梭。该研究为合理设计多功能mof膜作为高性能lsb的高级分离器提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Effect of Dual-Functional Groups in MOF-Modified Separators for Efficient Lithium-Ion Transport and Polysulfide Management of Lithium-Sulfur Batteries.

Lithium-sulfur batteries (LSBs) have been regarded as an attractive candidate for future energy storage systems owing to their exceptionally high energy density. However, the further application of LSBs is faced with critical challenges such as the intrinsic insulation of sulfur and the shuttle effect of soluble lithium polysulfides (LiPS). To overcome these problems, a dual functional metal-organic framework (UIO-66-NH2-HSO3) modified separator is proposed, strategically implemented to examine the dual functionality in anchoring LiPS and facilitating Li+ transport. Theoretical calculations indicated that the Li+ diffusion kinetics and LiPS adsorption ability are synergistically boosted by the dual-functional groups in the framework. The -HSO3 demonstrates high affinity for capturing LiPS species while simultaneously repulsing polysulfide anions. Conversely, -NH2 effectively immobilizes these anionic species. Additionally, the lower LUMO energy level of NH2-H2BDC and the higher HOMO energy level of HSO3-H2BDC significantly accelerate the reaction kinetics of LSBs. Electrochemical assessments revealed that the UIO-66-NH2-HSO3@PP composite delivers ultra-high rate capability and long-term cycling durability, surpassing most of the reported results. In situ spectroscopic analysis established that the UIO-66-NH2-HSO3@PP facilitates homogeneous lithium-ion migration while mitigating polysulfide shuttling. This study provides a theoretical foundation for the rational design of multifunctional MOFs membranes as advanced separators for high-performance LSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信