甲醇诱导ZnO表面均匀化用于高性能倒置有机太阳能电池。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-19 DOI:10.1002/cssc.202501810
Fenghua Zhang, Tingting Dai, Yang Liu, Yang Zhang, Xiaojuan Dai, Denghui Xu, Ye Zou, Xiong Li
{"title":"甲醇诱导ZnO表面均匀化用于高性能倒置有机太阳能电池。","authors":"Fenghua Zhang, Tingting Dai, Yang Liu, Yang Zhang, Xiaojuan Dai, Denghui Xu, Ye Zou, Xiong Li","doi":"10.1002/cssc.202501810","DOIUrl":null,"url":null,"abstract":"<p><p>The performance and stability of inverted organic solar cells (OSCs) are often limited by the inherent defects and photocatalytic activity of zinc oxide (ZnO) electron transport layers. A methanol-induced surface homogenization (MISH) strategy is proposed to simultaneously address these challenges. Through coordination and hydrogen bonding, methanol effectively passivates surface defects while suppressing the generation of hydroxyl radicals (-OH) under operational conditions. This dual-functional modification optimizes ZnO work function, enhances interfacial charge transport, and promotes a favorable vertical phase separation within the active layer. The optimized morphology effectively suppresses interfacial recombination while enhancing charge collection efficiency, leading to significant improvement in device performance. The inverted PM6:L8-BO-based OSCs achieve apower conversion efficiency (PCE) of 18.63% with exceptional thermal stability (T80 > 1000 h). Furthermore, the universality of the MISH strategy is demonstrated in PM6:L8-BO:BTP-eC9 ternary systems, yielding an impressive PCE of 18.85%. Comprehensive characterization, including atomic force microscopy, grazing-incidence wide-angle X-ray scattering, reveals that methanol treatment not only reduces trap states but also stabilizes molecular stacking during long-term operation. This work provides a simple and effective approach for ZnO modification, offering profound insights into interfacial engineering for high-performance and stable OSCs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501810"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methanol-Induced Surface Homogenization of ZnO for High-Performance Inverted Organic Solar Cells.\",\"authors\":\"Fenghua Zhang, Tingting Dai, Yang Liu, Yang Zhang, Xiaojuan Dai, Denghui Xu, Ye Zou, Xiong Li\",\"doi\":\"10.1002/cssc.202501810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The performance and stability of inverted organic solar cells (OSCs) are often limited by the inherent defects and photocatalytic activity of zinc oxide (ZnO) electron transport layers. A methanol-induced surface homogenization (MISH) strategy is proposed to simultaneously address these challenges. Through coordination and hydrogen bonding, methanol effectively passivates surface defects while suppressing the generation of hydroxyl radicals (-OH) under operational conditions. This dual-functional modification optimizes ZnO work function, enhances interfacial charge transport, and promotes a favorable vertical phase separation within the active layer. The optimized morphology effectively suppresses interfacial recombination while enhancing charge collection efficiency, leading to significant improvement in device performance. The inverted PM6:L8-BO-based OSCs achieve apower conversion efficiency (PCE) of 18.63% with exceptional thermal stability (T80 > 1000 h). Furthermore, the universality of the MISH strategy is demonstrated in PM6:L8-BO:BTP-eC9 ternary systems, yielding an impressive PCE of 18.85%. Comprehensive characterization, including atomic force microscopy, grazing-incidence wide-angle X-ray scattering, reveals that methanol treatment not only reduces trap states but also stabilizes molecular stacking during long-term operation. This work provides a simple and effective approach for ZnO modification, offering profound insights into interfacial engineering for high-performance and stable OSCs.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501810\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501810\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501810","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

倒置有机太阳能电池(OSCs)的性能和稳定性经常受到氧化锌(ZnO)电子传输层固有缺陷和光催化活性的限制。提出了一种甲醇诱导表面均质(MISH)策略来同时解决这些挑战。在操作条件下,甲醇通过配位和氢键有效钝化表面缺陷,同时抑制羟基自由基(-OH)的生成。这种双功能修饰优化了ZnO的功功能,增强了界面电荷输运,促进了活性层内良好的垂直相分离。优化后的形貌有效抑制了界面复合,同时提高了电荷收集效率,器件性能显著提高。倒置PM6: l8 - bo基OSCs实现18.63%的功率转换效率(PCE),具有出色的热稳定性(T80 > 1000 h)。此外,在PM6:L8-BO:BTP-eC9三元体系中证明了MISH策略的普遍性,产生了令人印象深刻的18.85%的PCE。综合表征,包括原子力显微镜,掠入射广角x射线散射,揭示了甲醇处理不仅减少了陷阱状态,而且在长期运行中稳定了分子堆积。该研究为ZnO改性提供了一种简单有效的方法,为高性能稳定的osc的界面工程提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methanol-Induced Surface Homogenization of ZnO for High-Performance Inverted Organic Solar Cells.

The performance and stability of inverted organic solar cells (OSCs) are often limited by the inherent defects and photocatalytic activity of zinc oxide (ZnO) electron transport layers. A methanol-induced surface homogenization (MISH) strategy is proposed to simultaneously address these challenges. Through coordination and hydrogen bonding, methanol effectively passivates surface defects while suppressing the generation of hydroxyl radicals (-OH) under operational conditions. This dual-functional modification optimizes ZnO work function, enhances interfacial charge transport, and promotes a favorable vertical phase separation within the active layer. The optimized morphology effectively suppresses interfacial recombination while enhancing charge collection efficiency, leading to significant improvement in device performance. The inverted PM6:L8-BO-based OSCs achieve apower conversion efficiency (PCE) of 18.63% with exceptional thermal stability (T80 > 1000 h). Furthermore, the universality of the MISH strategy is demonstrated in PM6:L8-BO:BTP-eC9 ternary systems, yielding an impressive PCE of 18.85%. Comprehensive characterization, including atomic force microscopy, grazing-incidence wide-angle X-ray scattering, reveals that methanol treatment not only reduces trap states but also stabilizes molecular stacking during long-term operation. This work provides a simple and effective approach for ZnO modification, offering profound insights into interfacial engineering for high-performance and stable OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信