{"title":"新型热处理对双相不锈钢S32101耐蚀性的影响","authors":"Xinghai Zhang, Zhiping Xiong, Xingwang Cheng","doi":"10.1007/s11665-025-10728-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the effect of a novel heat treatment on the microstructure evolution and corrosion resistance of S32101 was investigated, and the nucleation of equiaxial austenite and pitting mechanism during secondary solution treatment was revealed. The results demonstrated that the nucleation of austenite was concentrated within the ferrite, α/α grain boundaries and α/γ phase boundaries, with a preferential nucleation occurring at the α/α grain boundaries. Following solution treatment at 1050 °C, the corrosion current density reached its minimum value of 8.153 nAcm<sup>−2</sup>, accompanied by the highest E<sub>pit</sub>-E<sub>corr</sub> potential difference, indicating optimal resistance to pitting nucleation and superior pitting corrosion resistance. Furthermore, as the holding time increased, the break potential exhibited a trend of first increasing and then decreasing, with a maximum break potential of 691.32 mV observed after holding for 5 min, at which point the highest E<sub>pit</sub>-E<sub>corr</sub> was recorded at 907.37 mV. The ferrite, characterized by low PREN values, significantly influenced the overall pitting resistance of S32101. The pitting mechanism of S32101 in a 3.5% NaCl solution was attributed to the selective corrosion of ferrite.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 18","pages":"19968 - 19979"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of a Novel Heat Treatment on the Corrosion Resistance of Duplex Stainless Steel S32101\",\"authors\":\"Xinghai Zhang, Zhiping Xiong, Xingwang Cheng\",\"doi\":\"10.1007/s11665-025-10728-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the effect of a novel heat treatment on the microstructure evolution and corrosion resistance of S32101 was investigated, and the nucleation of equiaxial austenite and pitting mechanism during secondary solution treatment was revealed. The results demonstrated that the nucleation of austenite was concentrated within the ferrite, α/α grain boundaries and α/γ phase boundaries, with a preferential nucleation occurring at the α/α grain boundaries. Following solution treatment at 1050 °C, the corrosion current density reached its minimum value of 8.153 nAcm<sup>−2</sup>, accompanied by the highest E<sub>pit</sub>-E<sub>corr</sub> potential difference, indicating optimal resistance to pitting nucleation and superior pitting corrosion resistance. Furthermore, as the holding time increased, the break potential exhibited a trend of first increasing and then decreasing, with a maximum break potential of 691.32 mV observed after holding for 5 min, at which point the highest E<sub>pit</sub>-E<sub>corr</sub> was recorded at 907.37 mV. The ferrite, characterized by low PREN values, significantly influenced the overall pitting resistance of S32101. The pitting mechanism of S32101 in a 3.5% NaCl solution was attributed to the selective corrosion of ferrite.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"34 18\",\"pages\":\"19968 - 19979\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-025-10728-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-025-10728-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of a Novel Heat Treatment on the Corrosion Resistance of Duplex Stainless Steel S32101
In this paper, the effect of a novel heat treatment on the microstructure evolution and corrosion resistance of S32101 was investigated, and the nucleation of equiaxial austenite and pitting mechanism during secondary solution treatment was revealed. The results demonstrated that the nucleation of austenite was concentrated within the ferrite, α/α grain boundaries and α/γ phase boundaries, with a preferential nucleation occurring at the α/α grain boundaries. Following solution treatment at 1050 °C, the corrosion current density reached its minimum value of 8.153 nAcm−2, accompanied by the highest Epit-Ecorr potential difference, indicating optimal resistance to pitting nucleation and superior pitting corrosion resistance. Furthermore, as the holding time increased, the break potential exhibited a trend of first increasing and then decreasing, with a maximum break potential of 691.32 mV observed after holding for 5 min, at which point the highest Epit-Ecorr was recorded at 907.37 mV. The ferrite, characterized by low PREN values, significantly influenced the overall pitting resistance of S32101. The pitting mechanism of S32101 in a 3.5% NaCl solution was attributed to the selective corrosion of ferrite.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered