{"title":"半导体技术的替代材料:Li2VMnBr6双钙钛矿","authors":"Evren Görkem Özdemir","doi":"10.1007/s10948-025-07056-w","DOIUrl":null,"url":null,"abstract":"<div><p>Li<sub>2</sub>VMnBr<sub>6</sub> double perovskite material was obtained as a ferromagnetic semiconductor. The semiconductor band gaps for the spin-up orientations are 0.3725 eV, 1.7943 eV, and 2.0627 eV for the GGA + PBE, GGA + 3 eV, and GGA + 4 eV approximations, respectively. For the spin-down orientations, these gaps are -2.4070 eV, 3.0968 eV, and 3.0875 eV. The 10.52 Å is the lattice constant at the equilibrium point. Li<sub>2</sub>VMnBr<sub>6</sub> is mechanically stable. While it shows ductile character at 0 GPa pressure, it turns into a brittle structure after 10 GPa with increasing pressure. According to the Gibbs energy value, it is also structurally stable at low pressure. According to elastic and thermodynamic calculations, the Debye temperatures at the initial conditions were 212.264 K and 240.76 K. The Curie temperature and formation energy values were obtained as 303 K and -1.291 eV, respectively. The total magnetic moment of Li<sub>2</sub>VMnBr<sub>6</sub> double perovskite is obtained as 8.00 µ<sub>B</sub>. The most partial contributions come from Mn and V-atoms with the values of 4.4699 µ<sub>B</sub> and 2.6219 µ<sub>B</sub>. The structural, electronic, and magnetic characteristics of Li<sub>2</sub>VMnBr<sub>6</sub> double perovskite material and its elastic properties make it a highly efficient alternative material for semiconductor technologies.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Alternative Material for Semiconductor Technologies: Li2VMnBr6 Double Perovskite\",\"authors\":\"Evren Görkem Özdemir\",\"doi\":\"10.1007/s10948-025-07056-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Li<sub>2</sub>VMnBr<sub>6</sub> double perovskite material was obtained as a ferromagnetic semiconductor. The semiconductor band gaps for the spin-up orientations are 0.3725 eV, 1.7943 eV, and 2.0627 eV for the GGA + PBE, GGA + 3 eV, and GGA + 4 eV approximations, respectively. For the spin-down orientations, these gaps are -2.4070 eV, 3.0968 eV, and 3.0875 eV. The 10.52 Å is the lattice constant at the equilibrium point. Li<sub>2</sub>VMnBr<sub>6</sub> is mechanically stable. While it shows ductile character at 0 GPa pressure, it turns into a brittle structure after 10 GPa with increasing pressure. According to the Gibbs energy value, it is also structurally stable at low pressure. According to elastic and thermodynamic calculations, the Debye temperatures at the initial conditions were 212.264 K and 240.76 K. The Curie temperature and formation energy values were obtained as 303 K and -1.291 eV, respectively. The total magnetic moment of Li<sub>2</sub>VMnBr<sub>6</sub> double perovskite is obtained as 8.00 µ<sub>B</sub>. The most partial contributions come from Mn and V-atoms with the values of 4.4699 µ<sub>B</sub> and 2.6219 µ<sub>B</sub>. The structural, electronic, and magnetic characteristics of Li<sub>2</sub>VMnBr<sub>6</sub> double perovskite material and its elastic properties make it a highly efficient alternative material for semiconductor technologies.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 5\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-025-07056-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-07056-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
An Alternative Material for Semiconductor Technologies: Li2VMnBr6 Double Perovskite
Li2VMnBr6 double perovskite material was obtained as a ferromagnetic semiconductor. The semiconductor band gaps for the spin-up orientations are 0.3725 eV, 1.7943 eV, and 2.0627 eV for the GGA + PBE, GGA + 3 eV, and GGA + 4 eV approximations, respectively. For the spin-down orientations, these gaps are -2.4070 eV, 3.0968 eV, and 3.0875 eV. The 10.52 Å is the lattice constant at the equilibrium point. Li2VMnBr6 is mechanically stable. While it shows ductile character at 0 GPa pressure, it turns into a brittle structure after 10 GPa with increasing pressure. According to the Gibbs energy value, it is also structurally stable at low pressure. According to elastic and thermodynamic calculations, the Debye temperatures at the initial conditions were 212.264 K and 240.76 K. The Curie temperature and formation energy values were obtained as 303 K and -1.291 eV, respectively. The total magnetic moment of Li2VMnBr6 double perovskite is obtained as 8.00 µB. The most partial contributions come from Mn and V-atoms with the values of 4.4699 µB and 2.6219 µB. The structural, electronic, and magnetic characteristics of Li2VMnBr6 double perovskite material and its elastic properties make it a highly efficient alternative material for semiconductor technologies.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.