CdPS3在量子器件中的介电性能和低温稳定性

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Janet Obaemo, Eric Dong, Michael Mastalish, Evans Addo-Mensah, Hugh Churchill, Uche Wejinya
{"title":"CdPS3在量子器件中的介电性能和低温稳定性","authors":"Janet Obaemo,&nbsp;Eric Dong,&nbsp;Michael Mastalish,&nbsp;Evans Addo-Mensah,&nbsp;Hugh Churchill,&nbsp;Uche Wejinya","doi":"10.1007/s10853-025-11415-2","DOIUrl":null,"url":null,"abstract":"<div><p>One of the critical challenges in advancing quantum computing is mitigating material defects, particularly at the interfaces of superconducting layers and circuits. High dielectric losses further limit performance, necessitating stable high-κ materials. In this work, we introduce Cadmium Trithiophosphate (CdPS<sub>3</sub>) as a promising high-κ material at the nanoscale with a dielectric constant up to 10 at 44.07 nm thickness and a breakdown voltage surpassing traditional SiO<sub>2</sub>. Capacitance measurements in a Metal–Insulator–Metal (MIM) structure across 50–150 kHz reveal stable dielectric behavior, particularly in thinner flakes. Dielectric constants averaged 9.8 for 40–44 nm thick CdPS<sub>3</sub> and 8.5 for 115–119 nm thick CdPS<sub>3</sub>, respectively. The breakdown voltage analysis was conducted up to 200 V, and cryogenic testing at 4 K confirms its robustness under extreme conditions. These findings position CdPS<sub>3</sub> as a stable high-κ dielectric material suitable for energy storage, sensors, and quantum devices, where minimizing dielectric loss is crucial for maintaining coherence and device efficiency.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 36","pages":"16212 - 16225"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-025-11415-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Dielectric performance and cryogenic stability of CdPS3 for quantum device applications\",\"authors\":\"Janet Obaemo,&nbsp;Eric Dong,&nbsp;Michael Mastalish,&nbsp;Evans Addo-Mensah,&nbsp;Hugh Churchill,&nbsp;Uche Wejinya\",\"doi\":\"10.1007/s10853-025-11415-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the critical challenges in advancing quantum computing is mitigating material defects, particularly at the interfaces of superconducting layers and circuits. High dielectric losses further limit performance, necessitating stable high-κ materials. In this work, we introduce Cadmium Trithiophosphate (CdPS<sub>3</sub>) as a promising high-κ material at the nanoscale with a dielectric constant up to 10 at 44.07 nm thickness and a breakdown voltage surpassing traditional SiO<sub>2</sub>. Capacitance measurements in a Metal–Insulator–Metal (MIM) structure across 50–150 kHz reveal stable dielectric behavior, particularly in thinner flakes. Dielectric constants averaged 9.8 for 40–44 nm thick CdPS<sub>3</sub> and 8.5 for 115–119 nm thick CdPS<sub>3</sub>, respectively. The breakdown voltage analysis was conducted up to 200 V, and cryogenic testing at 4 K confirms its robustness under extreme conditions. These findings position CdPS<sub>3</sub> as a stable high-κ dielectric material suitable for energy storage, sensors, and quantum devices, where minimizing dielectric loss is crucial for maintaining coherence and device efficiency.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 36\",\"pages\":\"16212 - 16225\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10853-025-11415-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-11415-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-11415-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

推进量子计算的关键挑战之一是减轻材料缺陷,特别是在超导层和电路的界面上。高介电损耗进一步限制了性能,需要稳定的高κ材料。在这项工作中,我们介绍了三硫代磷酸镉(CdPS3)作为一种在纳米尺度上有前途的高κ材料,在44.07 nm厚度下介电常数高达10,击穿电压超过传统SiO2。金属-绝缘体-金属(MIM)结构在50-150 kHz范围内的电容测量显示稳定的介电行为,特别是在较薄的薄片中。40 ~ 44 nm厚CdPS3的介电常数平均为9.8,115 ~ 119 nm厚CdPS3的介电常数平均为8.5。击穿电压分析高达200 V,低温测试在4 K下证实了其在极端条件下的稳健性。这些发现将CdPS3定位为一种稳定的高κ介电材料,适用于能量存储、传感器和量子器件,其中最小化介电损耗对于保持相干性和器件效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dielectric performance and cryogenic stability of CdPS3 for quantum device applications

One of the critical challenges in advancing quantum computing is mitigating material defects, particularly at the interfaces of superconducting layers and circuits. High dielectric losses further limit performance, necessitating stable high-κ materials. In this work, we introduce Cadmium Trithiophosphate (CdPS3) as a promising high-κ material at the nanoscale with a dielectric constant up to 10 at 44.07 nm thickness and a breakdown voltage surpassing traditional SiO2. Capacitance measurements in a Metal–Insulator–Metal (MIM) structure across 50–150 kHz reveal stable dielectric behavior, particularly in thinner flakes. Dielectric constants averaged 9.8 for 40–44 nm thick CdPS3 and 8.5 for 115–119 nm thick CdPS3, respectively. The breakdown voltage analysis was conducted up to 200 V, and cryogenic testing at 4 K confirms its robustness under extreme conditions. These findings position CdPS3 as a stable high-κ dielectric material suitable for energy storage, sensors, and quantum devices, where minimizing dielectric loss is crucial for maintaining coherence and device efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信