基于快速卷积的边界阵列联合处理成像方案

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yibo Lin;Hongzhi Guo;Changhao Shang;Wei Zhang;Zishu He
{"title":"基于快速卷积的边界阵列联合处理成像方案","authors":"Yibo Lin;Hongzhi Guo;Changhao Shang;Wei Zhang;Zishu He","doi":"10.1109/TIM.2025.3606057","DOIUrl":null,"url":null,"abstract":"When using boundary multiple-input–multiple-output (MIMO) arrays for large-scale imaging, the requirement for a large number of array elements leads to high cost. To tackle this challenge, this article presents a novel joint signal-processing framework for boundary array (BA) configurations in near-field millimeter-wave (MMW) imaging systems. By jointly processing the transmit–receive array data of <inline-formula> <tex-math>$3\\times 3$ </tex-math></inline-formula> adjacent BA elements, the imaging performance equivalent to that of a <inline-formula> <tex-math>$5\\times 5$ </tex-math></inline-formula> BA is achieved, significantly reducing the number of required elements and improving imaging efficiency. A fast convolution algorithm (FCA) based on the fast Fourier transform (FFT) is proposed to enable fast imaging, which avoids plane-wave approximation and enhances imaging accuracy. To adapt to the joint processing of transmit–receive elements between adjacent BAs, subscenes data correction rules are established by analyzing the distance differences between reference points and other scattering points relative to antenna elements, and experimental verification was conducted. The experimental results demonstrate that the resolutions achieved with the joint FCA and range migration algorithm (RMA) processing are 3.18 and 3.37 mm, respectively, exhibiting no significant degradation compared to the full array resolutions of 2.98 and 3.31 mm. In the experiments, the root-mean-square error (RMSE) for the joint-processed steel plate imaging result is approximately −24 dB, compared to only −13 dB for the nonjoint processing. For human body imaging, joint processing significantly improves the presentation of fine details. Furthermore, the efficiency of the spatial single-plane search for the proposed methodology is approximately three orders of magnitude superior to that of the back-projection algorithm (BPA), ensuring both imaging speed and accuracy while substantially reducing hardware costs.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-12"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging Scheme of Joint Processing of Boundary Array Based on Fast Convolution\",\"authors\":\"Yibo Lin;Hongzhi Guo;Changhao Shang;Wei Zhang;Zishu He\",\"doi\":\"10.1109/TIM.2025.3606057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When using boundary multiple-input–multiple-output (MIMO) arrays for large-scale imaging, the requirement for a large number of array elements leads to high cost. To tackle this challenge, this article presents a novel joint signal-processing framework for boundary array (BA) configurations in near-field millimeter-wave (MMW) imaging systems. By jointly processing the transmit–receive array data of <inline-formula> <tex-math>$3\\\\times 3$ </tex-math></inline-formula> adjacent BA elements, the imaging performance equivalent to that of a <inline-formula> <tex-math>$5\\\\times 5$ </tex-math></inline-formula> BA is achieved, significantly reducing the number of required elements and improving imaging efficiency. A fast convolution algorithm (FCA) based on the fast Fourier transform (FFT) is proposed to enable fast imaging, which avoids plane-wave approximation and enhances imaging accuracy. To adapt to the joint processing of transmit–receive elements between adjacent BAs, subscenes data correction rules are established by analyzing the distance differences between reference points and other scattering points relative to antenna elements, and experimental verification was conducted. The experimental results demonstrate that the resolutions achieved with the joint FCA and range migration algorithm (RMA) processing are 3.18 and 3.37 mm, respectively, exhibiting no significant degradation compared to the full array resolutions of 2.98 and 3.31 mm. In the experiments, the root-mean-square error (RMSE) for the joint-processed steel plate imaging result is approximately −24 dB, compared to only −13 dB for the nonjoint processing. For human body imaging, joint processing significantly improves the presentation of fine details. Furthermore, the efficiency of the spatial single-plane search for the proposed methodology is approximately three orders of magnitude superior to that of the back-projection algorithm (BPA), ensuring both imaging speed and accuracy while substantially reducing hardware costs.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-12\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11152662/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11152662/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

边界多输入多输出(MIMO)阵列用于大规模成像时,对阵列元素数量的要求很高,成本也很高。为了解决这一挑战,本文提出了一种用于近场毫米波成像系统中边界阵列(BA)配置的新型联合信号处理框架。通过对$3\ × 3$相邻BA元的收发阵列数据进行联合处理,实现了相当于$5\ × 5$ BA的成像性能,显著减少了所需元的数量,提高了成像效率。为了实现快速成像,提出了一种基于快速傅里叶变换(FFT)的快速卷积算法,避免了平面波逼近,提高了成像精度。为了适应相邻BAs之间收发元的联合处理,通过分析参考点与其他散射点相对于天线元的距离差,建立了子场景数据校正规则,并进行了实验验证。实验结果表明,FCA和距离迁移算法(RMA)联合处理的分辨率分别为3.18和3.37 mm,与全阵列分辨率的2.98和3.31 mm相比,没有明显的下降。在实验中,关节处理钢板成像结果的均方根误差(RMSE)约为−24 dB,而非关节处理的结果仅为−13 dB。对于人体成像,关节处理显著改善了精细细节的呈现。此外,该方法的空间单平面搜索效率比反向投影算法(BPA)高出约三个数量级,在保证成像速度和精度的同时大大降低了硬件成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imaging Scheme of Joint Processing of Boundary Array Based on Fast Convolution
When using boundary multiple-input–multiple-output (MIMO) arrays for large-scale imaging, the requirement for a large number of array elements leads to high cost. To tackle this challenge, this article presents a novel joint signal-processing framework for boundary array (BA) configurations in near-field millimeter-wave (MMW) imaging systems. By jointly processing the transmit–receive array data of $3\times 3$ adjacent BA elements, the imaging performance equivalent to that of a $5\times 5$ BA is achieved, significantly reducing the number of required elements and improving imaging efficiency. A fast convolution algorithm (FCA) based on the fast Fourier transform (FFT) is proposed to enable fast imaging, which avoids plane-wave approximation and enhances imaging accuracy. To adapt to the joint processing of transmit–receive elements between adjacent BAs, subscenes data correction rules are established by analyzing the distance differences between reference points and other scattering points relative to antenna elements, and experimental verification was conducted. The experimental results demonstrate that the resolutions achieved with the joint FCA and range migration algorithm (RMA) processing are 3.18 and 3.37 mm, respectively, exhibiting no significant degradation compared to the full array resolutions of 2.98 and 3.31 mm. In the experiments, the root-mean-square error (RMSE) for the joint-processed steel plate imaging result is approximately −24 dB, compared to only −13 dB for the nonjoint processing. For human body imaging, joint processing significantly improves the presentation of fine details. Furthermore, the efficiency of the spatial single-plane search for the proposed methodology is approximately three orders of magnitude superior to that of the back-projection algorithm (BPA), ensuring both imaging speed and accuracy while substantially reducing hardware costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信