基于减少传感器数量的三相DAB变换器晶体管开路故障诊断

IF 3.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jonathan Emmanuel Ochoa Sosa;Rubén Orlando Núñez;G. Elías Oggier;Facundo Aguilera;Germán G. Oggier;Obaid Aldosari
{"title":"基于减少传感器数量的三相DAB变换器晶体管开路故障诊断","authors":"Jonathan Emmanuel Ochoa Sosa;Rubén Orlando Núñez;G. Elías Oggier;Facundo Aguilera;Germán G. Oggier;Obaid Aldosari","doi":"10.1109/OJPEL.2025.3600329","DOIUrl":null,"url":null,"abstract":"This work presents a diagnosis strategy of transistor open-circuit faults for three-phase dual-active bridge DC-DC converters. The diagnostic approach evaluates the DC components of the phase currents established due to a fault condition. In addition, as these symptoms are reflected in the DC-side current waveform of the active bridges, this paper proposes a fault diagnosis scheme by measuring only the current from one source side, significantly reducing the number of sensors compared to previous proposals. It is demonstrated that the faulty transistor can be identified within a time interval of less than two switching periods, enabling the implementation of a protection scheme that modifies the modulation strategy to prevent saturation of the transformer’s core by the presence of the DC components. In order to verify the practical feasibility of the proposal, the whole transition is evaluated from the moment a fault condition occurs, the proposed diagnostic strategy identifies the failed device, and finally the converter is reconfigured to begin operating in a fault-tolerant mode, operating in its single-phase mode, continuing with the power transfer to the load. The new operating limits are established, corresponding to maximum transferable power and soft-switching operating conditions. Experimental results obtained with a 1.5 kW laboratory prototype under various operating conditions are presented.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1547-1558"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11130376","citationCount":"0","resultStr":"{\"title\":\"Transistor Open-Circuit Fault Diagnosis for Three-Phase DAB Converters Using a Reduced Number of Sensors\",\"authors\":\"Jonathan Emmanuel Ochoa Sosa;Rubén Orlando Núñez;G. Elías Oggier;Facundo Aguilera;Germán G. Oggier;Obaid Aldosari\",\"doi\":\"10.1109/OJPEL.2025.3600329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a diagnosis strategy of transistor open-circuit faults for three-phase dual-active bridge DC-DC converters. The diagnostic approach evaluates the DC components of the phase currents established due to a fault condition. In addition, as these symptoms are reflected in the DC-side current waveform of the active bridges, this paper proposes a fault diagnosis scheme by measuring only the current from one source side, significantly reducing the number of sensors compared to previous proposals. It is demonstrated that the faulty transistor can be identified within a time interval of less than two switching periods, enabling the implementation of a protection scheme that modifies the modulation strategy to prevent saturation of the transformer’s core by the presence of the DC components. In order to verify the practical feasibility of the proposal, the whole transition is evaluated from the moment a fault condition occurs, the proposed diagnostic strategy identifies the failed device, and finally the converter is reconfigured to begin operating in a fault-tolerant mode, operating in its single-phase mode, continuing with the power transfer to the load. The new operating limits are established, corresponding to maximum transferable power and soft-switching operating conditions. Experimental results obtained with a 1.5 kW laboratory prototype under various operating conditions are presented.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"6 \",\"pages\":\"1547-1558\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11130376\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11130376/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11130376/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种三相双有源桥式DC-DC变换器晶体管开路故障的诊断策略。诊断方法评估由于故障条件而建立的相电流的直流分量。此外,由于这些症状反映在有源电桥的直流侧电流波形中,因此本文提出了仅测量一个源侧电流的故障诊断方案,与之前的建议相比,大大减少了传感器的数量。结果表明,故障晶体管可以在少于两个开关周期的时间间隔内识别,从而实现修改调制策略的保护方案,以防止直流元件的存在导致变压器铁心饱和。为了验证该建议的实际可行性,从故障条件发生的那一刻起,对整个转换进行评估,所提出的诊断策略识别出故障设备,最后将转换器重新配置为开始以容错模式运行,以单相模式运行,继续向负载传输电力。建立了新的运行限制,对应于最大可转移功率和软开关运行条件。给出了用1.5 kW实验室样机在各种工况下的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transistor Open-Circuit Fault Diagnosis for Three-Phase DAB Converters Using a Reduced Number of Sensors
This work presents a diagnosis strategy of transistor open-circuit faults for three-phase dual-active bridge DC-DC converters. The diagnostic approach evaluates the DC components of the phase currents established due to a fault condition. In addition, as these symptoms are reflected in the DC-side current waveform of the active bridges, this paper proposes a fault diagnosis scheme by measuring only the current from one source side, significantly reducing the number of sensors compared to previous proposals. It is demonstrated that the faulty transistor can be identified within a time interval of less than two switching periods, enabling the implementation of a protection scheme that modifies the modulation strategy to prevent saturation of the transformer’s core by the presence of the DC components. In order to verify the practical feasibility of the proposal, the whole transition is evaluated from the moment a fault condition occurs, the proposed diagnostic strategy identifies the failed device, and finally the converter is reconfigured to begin operating in a fault-tolerant mode, operating in its single-phase mode, continuing with the power transfer to the load. The new operating limits are established, corresponding to maximum transferable power and soft-switching operating conditions. Experimental results obtained with a 1.5 kW laboratory prototype under various operating conditions are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信