DeepcomplexEIT:探索复值EIT的图像重建

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zichen Wang;Tao Zhang;Yunjie Yang;Qi Wang
{"title":"DeepcomplexEIT:探索复值EIT的图像重建","authors":"Zichen Wang;Tao Zhang;Yunjie Yang;Qi Wang","doi":"10.1109/TIM.2025.3608349","DOIUrl":null,"url":null,"abstract":"Complex-valued electrical impedance tomography (Cv-EIT) has insights that visualize the electrical properties (conductivities and permittivity) of various healthy and injured organizations/tissues, which is a promising technique in industrial and medical imaging. Nevertheless, most of the current research has mainly focused on the conductivity parameter, ignoring the influence of the impact on the permittivity. To address the above challenges, a novel learning-based Cv-EIT image reconstruction method is proposed, referred to as DeepcomplexEIT, which could reconstruct the distributions of conductivity and permittivity simultaneously with the multiphysics information interactions. The DeepcomplexEIT is designed to obtain high-quality complex-valued admittivity distributions by leveraging the advantages of both convolutional neural networks and Transformers. In detail: 1) the U-shaped architecture is modified using depth-separable convolution and pooling in the complex-valued domain; 2) the 2-D filter with learnable cutoff frequency is proposed for featuring the multifrequency information in the spatial and spectral domains; and 3) a novel complex-valued Vision Transformer (Cv-ViT) and cross-domain attention are designed for featuring the local–global multiscale information with the multiphysics interactions and complementation. Our extended experiments demonstrate that DeepcomplexEIT outperforms state-of-the-art (SOTA) complex-valued models in terms of the complicated shape features and multiphase distributions with respect to the admittivity. The performances are evaluated using the tank phantoms with a 16-electrode EIT system and about 67-dB signal-to-noise ratio (SNR), where the average quantitative metrics (conductivity/permittivity) are root-mean-square error (RMSE) of 1.982/0.946 and structural similarity index metric (SSIM) of 0.992/0.994 with multiphase inclusions, as well as RMSE of 2.593/2.506 and SSIM of 0.989/0.992 with lung-shaped inclusions, respectively. Overall, the DeepComplexEIT is expected to further promote the multiparameter visualization in practical applications.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-17"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepcomplexEIT: Exploring the Image Reconstruction of Complex-Valued EIT\",\"authors\":\"Zichen Wang;Tao Zhang;Yunjie Yang;Qi Wang\",\"doi\":\"10.1109/TIM.2025.3608349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex-valued electrical impedance tomography (Cv-EIT) has insights that visualize the electrical properties (conductivities and permittivity) of various healthy and injured organizations/tissues, which is a promising technique in industrial and medical imaging. Nevertheless, most of the current research has mainly focused on the conductivity parameter, ignoring the influence of the impact on the permittivity. To address the above challenges, a novel learning-based Cv-EIT image reconstruction method is proposed, referred to as DeepcomplexEIT, which could reconstruct the distributions of conductivity and permittivity simultaneously with the multiphysics information interactions. The DeepcomplexEIT is designed to obtain high-quality complex-valued admittivity distributions by leveraging the advantages of both convolutional neural networks and Transformers. In detail: 1) the U-shaped architecture is modified using depth-separable convolution and pooling in the complex-valued domain; 2) the 2-D filter with learnable cutoff frequency is proposed for featuring the multifrequency information in the spatial and spectral domains; and 3) a novel complex-valued Vision Transformer (Cv-ViT) and cross-domain attention are designed for featuring the local–global multiscale information with the multiphysics interactions and complementation. Our extended experiments demonstrate that DeepcomplexEIT outperforms state-of-the-art (SOTA) complex-valued models in terms of the complicated shape features and multiphase distributions with respect to the admittivity. The performances are evaluated using the tank phantoms with a 16-electrode EIT system and about 67-dB signal-to-noise ratio (SNR), where the average quantitative metrics (conductivity/permittivity) are root-mean-square error (RMSE) of 1.982/0.946 and structural similarity index metric (SSIM) of 0.992/0.994 with multiphase inclusions, as well as RMSE of 2.593/2.506 and SSIM of 0.989/0.992 with lung-shaped inclusions, respectively. Overall, the DeepComplexEIT is expected to further promote the multiparameter visualization in practical applications.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-17\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11156118/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11156118/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

复值电阻抗断层扫描(Cv-EIT)具有可视化各种健康和受伤组织/组织的电学性质(电导率和介电常数)的见解,这是工业和医学成像中很有前途的技术。然而,目前的研究大多集中在电导率参数上,忽略了冲击对介电常数的影响。针对上述挑战,提出了一种基于学习的Cv-EIT图像重建方法,即DeepcomplexEIT,该方法可以在多物理场信息交互的同时重建电导率和介电常数的分布。DeepcomplexEIT旨在通过利用卷积神经网络和变压器的优势来获得高质量的复值导纳分布。具体方法:1)利用复值域的深度可分卷积和池化对u型结构进行改进;2)提出了具有可学习截止频率的二维滤波器,用于在空间域和谱域特征化多频信息;3)设计了一种新的复杂值视觉转换器(Cv-ViT)和跨域关注,以突出局部-全局多尺度信息,并实现多物理场相互作用和互补。我们的扩展实验表明,在复杂形状特征和多相分布方面,DeepcomplexEIT优于最先进的(SOTA)复杂值模型。采用16电极EIT系统和67 db信噪比(SNR)对罐影进行了性能评价,其中多相夹杂物的平均定量指标(电导率/介电常数)的均方根误差(RMSE)为1.982/0.946,结构相似指数(SSIM)为0.992/0.994,肺形夹杂物的均方根误差(RMSE)为2.593/2.506,SSIM为0.989/0.992。总体而言,DeepComplexEIT有望在实际应用中进一步推动多参数可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepcomplexEIT: Exploring the Image Reconstruction of Complex-Valued EIT
Complex-valued electrical impedance tomography (Cv-EIT) has insights that visualize the electrical properties (conductivities and permittivity) of various healthy and injured organizations/tissues, which is a promising technique in industrial and medical imaging. Nevertheless, most of the current research has mainly focused on the conductivity parameter, ignoring the influence of the impact on the permittivity. To address the above challenges, a novel learning-based Cv-EIT image reconstruction method is proposed, referred to as DeepcomplexEIT, which could reconstruct the distributions of conductivity and permittivity simultaneously with the multiphysics information interactions. The DeepcomplexEIT is designed to obtain high-quality complex-valued admittivity distributions by leveraging the advantages of both convolutional neural networks and Transformers. In detail: 1) the U-shaped architecture is modified using depth-separable convolution and pooling in the complex-valued domain; 2) the 2-D filter with learnable cutoff frequency is proposed for featuring the multifrequency information in the spatial and spectral domains; and 3) a novel complex-valued Vision Transformer (Cv-ViT) and cross-domain attention are designed for featuring the local–global multiscale information with the multiphysics interactions and complementation. Our extended experiments demonstrate that DeepcomplexEIT outperforms state-of-the-art (SOTA) complex-valued models in terms of the complicated shape features and multiphase distributions with respect to the admittivity. The performances are evaluated using the tank phantoms with a 16-electrode EIT system and about 67-dB signal-to-noise ratio (SNR), where the average quantitative metrics (conductivity/permittivity) are root-mean-square error (RMSE) of 1.982/0.946 and structural similarity index metric (SSIM) of 0.992/0.994 with multiphase inclusions, as well as RMSE of 2.593/2.506 and SSIM of 0.989/0.992 with lung-shaped inclusions, respectively. Overall, the DeepComplexEIT is expected to further promote the multiparameter visualization in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信