{"title":"基于自适应阈值小波算法的陀螺仪实时去噪:实现超过12 dB的信噪比改善","authors":"Teresa Natale;Pedro Bossi Núñez;Ludovico Dindelli;Francesco Dell’Olio","doi":"10.1109/TIM.2025.3608316","DOIUrl":null,"url":null,"abstract":"Gyroscopes play a pivotal role in applications ranging from navigation and robotics to aerospace and consumer electronics, where denoising is often critical to improve overall system performance. Traditional Kalman-based filters are often regarded as the gold standard for inertial sensor denoising, yet they require assumptions on the system’s dynamics that may not always hold, particularly in the presence of abrupt or unpredictable maneuvers. Several alternative approaches avoid such assumptions, but typically exhibit inferior performance compared to Kalman filters (KFs). Here we report on a novel wavelet-based denoising algorithm that operates in real time without relying on prior knowledge of the sensor’s dynamic conditions. Our technique adaptively calibrates the threshold by modeling noise with a generalized Gaussian distribution (GGD) and adjusts it according to the ongoing signal variance. This strategy offers two core advantages: it preserves relevant signal discontinuities and handles broad noise distributions effectively, including non-Gaussian noise. We validate the algorithm on two distinct gyroscope platforms: a state-of-the-art fiber optic gyroscope, characterized by low noise and non-Gaussian behavior, and a commercial MEMS gyroscope with primarily Gaussian noise. Standard test signals—such as blocks, step, heavisine, and Doppler—reveal that our approach surpasses the KF by up to 1 dB and outperforms alternative wavelet-based techniques by at least 4 dB in signal-to-noise ratio (SNR) enhancement. Furthermore, the algorithm exhibits minimal overshoot at signal discontinuities, ensuring accurate angular rate reconstruction. These results establish our method as a high-performance and robust solution for gyroscope denoising especially in high-end inertial sensing. The algorithm operates without any prior knowledge of the host platform’s motion model; it relies only on weak, sensor-level statistical assumptions that are satisfied by practically all gyroscopes.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-11"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gyroscope Real-Time Denoising by an Adaptive Threshold Wavelet Algorithm: Achieving Over 12 dB SNR Improvement\",\"authors\":\"Teresa Natale;Pedro Bossi Núñez;Ludovico Dindelli;Francesco Dell’Olio\",\"doi\":\"10.1109/TIM.2025.3608316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gyroscopes play a pivotal role in applications ranging from navigation and robotics to aerospace and consumer electronics, where denoising is often critical to improve overall system performance. Traditional Kalman-based filters are often regarded as the gold standard for inertial sensor denoising, yet they require assumptions on the system’s dynamics that may not always hold, particularly in the presence of abrupt or unpredictable maneuvers. Several alternative approaches avoid such assumptions, but typically exhibit inferior performance compared to Kalman filters (KFs). Here we report on a novel wavelet-based denoising algorithm that operates in real time without relying on prior knowledge of the sensor’s dynamic conditions. Our technique adaptively calibrates the threshold by modeling noise with a generalized Gaussian distribution (GGD) and adjusts it according to the ongoing signal variance. This strategy offers two core advantages: it preserves relevant signal discontinuities and handles broad noise distributions effectively, including non-Gaussian noise. We validate the algorithm on two distinct gyroscope platforms: a state-of-the-art fiber optic gyroscope, characterized by low noise and non-Gaussian behavior, and a commercial MEMS gyroscope with primarily Gaussian noise. Standard test signals—such as blocks, step, heavisine, and Doppler—reveal that our approach surpasses the KF by up to 1 dB and outperforms alternative wavelet-based techniques by at least 4 dB in signal-to-noise ratio (SNR) enhancement. Furthermore, the algorithm exhibits minimal overshoot at signal discontinuities, ensuring accurate angular rate reconstruction. These results establish our method as a high-performance and robust solution for gyroscope denoising especially in high-end inertial sensing. The algorithm operates without any prior knowledge of the host platform’s motion model; it relies only on weak, sensor-level statistical assumptions that are satisfied by practically all gyroscopes.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11156159/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11156159/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Gyroscope Real-Time Denoising by an Adaptive Threshold Wavelet Algorithm: Achieving Over 12 dB SNR Improvement
Gyroscopes play a pivotal role in applications ranging from navigation and robotics to aerospace and consumer electronics, where denoising is often critical to improve overall system performance. Traditional Kalman-based filters are often regarded as the gold standard for inertial sensor denoising, yet they require assumptions on the system’s dynamics that may not always hold, particularly in the presence of abrupt or unpredictable maneuvers. Several alternative approaches avoid such assumptions, but typically exhibit inferior performance compared to Kalman filters (KFs). Here we report on a novel wavelet-based denoising algorithm that operates in real time without relying on prior knowledge of the sensor’s dynamic conditions. Our technique adaptively calibrates the threshold by modeling noise with a generalized Gaussian distribution (GGD) and adjusts it according to the ongoing signal variance. This strategy offers two core advantages: it preserves relevant signal discontinuities and handles broad noise distributions effectively, including non-Gaussian noise. We validate the algorithm on two distinct gyroscope platforms: a state-of-the-art fiber optic gyroscope, characterized by low noise and non-Gaussian behavior, and a commercial MEMS gyroscope with primarily Gaussian noise. Standard test signals—such as blocks, step, heavisine, and Doppler—reveal that our approach surpasses the KF by up to 1 dB and outperforms alternative wavelet-based techniques by at least 4 dB in signal-to-noise ratio (SNR) enhancement. Furthermore, the algorithm exhibits minimal overshoot at signal discontinuities, ensuring accurate angular rate reconstruction. These results establish our method as a high-performance and robust solution for gyroscope denoising especially in high-end inertial sensing. The algorithm operates without any prior knowledge of the host platform’s motion model; it relies only on weak, sensor-level statistical assumptions that are satisfied by practically all gyroscopes.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.