CSE-HMM-RFN:一种多功能雷达脉冲去交织方法

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuxin Fu;Jiantao Wang;Jie Huang;Tongxin Dang;Min Xie
{"title":"CSE-HMM-RFN:一种多功能雷达脉冲去交织方法","authors":"Yuxin Fu;Jiantao Wang;Jie Huang;Tongxin Dang;Min Xie","doi":"10.1109/JSEN.2025.3594372","DOIUrl":null,"url":null,"abstract":"Despite available prior knowledge, existing pulse deinterleaving algorithms for multifunctional radars (MFRs) suffer from limited robustness and high computational complexity. To address these limitations, we propose the CSE-hidden Markov model (HMM)-residual fence network (RFN), a novel hybrid pulse deinterleaving framework. To begin with, a two-layer hierarchical hidden Markov model (HHMM) is developed that maps operational tasks to pulse groups based on MFR radiation mechanisms. Then, the temporal dynamics within and between pulse groups are characterized by their temporal intervals, enabling a decomposed deinterleaving strategy, that is, pulse group extraction followed by temporal combination search. Accordingly, CSE-HMM-RFN implements two core modules. Each module constructs HMMs where nonzero states indicate target pulses or pulse groups, and employs a Viterbi algorithm guided by RFN path weights to backtrack optimal state transition paths. Experimental results demonstrate that CSE-HMM-RFN achieves enhanced robustness and reduced computational resources compared to baseline algorithms.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"34956-34970"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSE-HMM-RFN: A Method for Multifunctional Radar Pulse Deinterleaving\",\"authors\":\"Yuxin Fu;Jiantao Wang;Jie Huang;Tongxin Dang;Min Xie\",\"doi\":\"10.1109/JSEN.2025.3594372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite available prior knowledge, existing pulse deinterleaving algorithms for multifunctional radars (MFRs) suffer from limited robustness and high computational complexity. To address these limitations, we propose the CSE-hidden Markov model (HMM)-residual fence network (RFN), a novel hybrid pulse deinterleaving framework. To begin with, a two-layer hierarchical hidden Markov model (HHMM) is developed that maps operational tasks to pulse groups based on MFR radiation mechanisms. Then, the temporal dynamics within and between pulse groups are characterized by their temporal intervals, enabling a decomposed deinterleaving strategy, that is, pulse group extraction followed by temporal combination search. Accordingly, CSE-HMM-RFN implements two core modules. Each module constructs HMMs where nonzero states indicate target pulses or pulse groups, and employs a Viterbi algorithm guided by RFN path weights to backtrack optimal state transition paths. Experimental results demonstrate that CSE-HMM-RFN achieves enhanced robustness and reduced computational resources compared to baseline algorithms.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 18\",\"pages\":\"34956-34970\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11119044/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11119044/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

尽管已有先验知识,但现有的多功能雷达脉冲去交织算法鲁棒性有限,且计算复杂度高。为了解决这些问题,我们提出了一种新的混合脉冲去交织框架——隐马尔可夫模型(HMM)-残差栅栏网络(RFN)。首先,建立了一种基于MFR辐射机制的两层分层隐马尔可夫模型(HHMM),该模型将操作任务映射到脉冲组。然后,利用脉冲组的时间间隔来表征脉冲组内部和脉冲组之间的时间动态,实现分解去交错策略,即脉冲组提取后进行时间组合搜索。因此,CSE-HMM-RFN实现了两个核心模块。每个模块构建hmm,其中非零状态表示目标脉冲或脉冲组,并采用RFN路径权值引导的Viterbi算法回溯最优状态转移路径。实验结果表明,与基线算法相比,CSE-HMM-RFN具有更强的鲁棒性和更少的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CSE-HMM-RFN: A Method for Multifunctional Radar Pulse Deinterleaving
Despite available prior knowledge, existing pulse deinterleaving algorithms for multifunctional radars (MFRs) suffer from limited robustness and high computational complexity. To address these limitations, we propose the CSE-hidden Markov model (HMM)-residual fence network (RFN), a novel hybrid pulse deinterleaving framework. To begin with, a two-layer hierarchical hidden Markov model (HHMM) is developed that maps operational tasks to pulse groups based on MFR radiation mechanisms. Then, the temporal dynamics within and between pulse groups are characterized by their temporal intervals, enabling a decomposed deinterleaving strategy, that is, pulse group extraction followed by temporal combination search. Accordingly, CSE-HMM-RFN implements two core modules. Each module constructs HMMs where nonzero states indicate target pulses or pulse groups, and employs a Viterbi algorithm guided by RFN path weights to backtrack optimal state transition paths. Experimental results demonstrate that CSE-HMM-RFN achieves enhanced robustness and reduced computational resources compared to baseline algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信