{"title":"基于智能逆变器的电表编码检测配电系统状态估计中的假数据注入攻击","authors":"Hang Zhang;Bo Liu;Hongyu Wu","doi":"10.35833/MPCE.2024.000882","DOIUrl":null,"url":null,"abstract":"Meter encoding, as a side-effect-free scheme, has been proposed to detect false data injection (FDI) attacks without significantly affecting the operation of power systems. However, existing meter encoding schemes either require encoding lots of measurements from different buses to protect a substantial proportion of a power system or are unhidden from alert attackers. To address these issues, this paper proposes a smart in-verter enabled meter encoding scheme for detecting FDI attacks in distribution system state estimation. The proposed scheme only encodes the measurements from the existing programmable smart inverters. Meanwhile, this scheme can protect all the downstream buses from the encoded inverter bus. Compared with existing schemes, the proposed scheme encodes fewer meters when protecting the same number of buses, which decreases the encoding cost. In addition, by following the physical power flow laws, the proposed scheme is hidden from alert attackers who can implement the state estimation-based bad data detection (BDD). Simulation results from the IEEE 69-bus distribution system demonstrate that the proposed scheme can mislead the attacker's state estimation on all the downstream bus-es from the encoded bus without arousing the attacker's suspicion. FDI attacks that are constructed based on the misled estimated state are very likely to trigger the defender's BDD alarm.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1776-1786"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858607","citationCount":"0","resultStr":"{\"title\":\"Smart Inverter Enabled Meter Encoding for Detecting False Data Injection Attacks in Distribution System State Estimation\",\"authors\":\"Hang Zhang;Bo Liu;Hongyu Wu\",\"doi\":\"10.35833/MPCE.2024.000882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meter encoding, as a side-effect-free scheme, has been proposed to detect false data injection (FDI) attacks without significantly affecting the operation of power systems. However, existing meter encoding schemes either require encoding lots of measurements from different buses to protect a substantial proportion of a power system or are unhidden from alert attackers. To address these issues, this paper proposes a smart in-verter enabled meter encoding scheme for detecting FDI attacks in distribution system state estimation. The proposed scheme only encodes the measurements from the existing programmable smart inverters. Meanwhile, this scheme can protect all the downstream buses from the encoded inverter bus. Compared with existing schemes, the proposed scheme encodes fewer meters when protecting the same number of buses, which decreases the encoding cost. In addition, by following the physical power flow laws, the proposed scheme is hidden from alert attackers who can implement the state estimation-based bad data detection (BDD). Simulation results from the IEEE 69-bus distribution system demonstrate that the proposed scheme can mislead the attacker's state estimation on all the downstream bus-es from the encoded bus without arousing the attacker's suspicion. FDI attacks that are constructed based on the misled estimated state are very likely to trigger the defender's BDD alarm.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 5\",\"pages\":\"1776-1786\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858607\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858607/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858607/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Smart Inverter Enabled Meter Encoding for Detecting False Data Injection Attacks in Distribution System State Estimation
Meter encoding, as a side-effect-free scheme, has been proposed to detect false data injection (FDI) attacks without significantly affecting the operation of power systems. However, existing meter encoding schemes either require encoding lots of measurements from different buses to protect a substantial proportion of a power system or are unhidden from alert attackers. To address these issues, this paper proposes a smart in-verter enabled meter encoding scheme for detecting FDI attacks in distribution system state estimation. The proposed scheme only encodes the measurements from the existing programmable smart inverters. Meanwhile, this scheme can protect all the downstream buses from the encoded inverter bus. Compared with existing schemes, the proposed scheme encodes fewer meters when protecting the same number of buses, which decreases the encoding cost. In addition, by following the physical power flow laws, the proposed scheme is hidden from alert attackers who can implement the state estimation-based bad data detection (BDD). Simulation results from the IEEE 69-bus distribution system demonstrate that the proposed scheme can mislead the attacker's state estimation on all the downstream bus-es from the encoded bus without arousing the attacker's suspicion. FDI attacks that are constructed based on the misled estimated state are very likely to trigger the defender's BDD alarm.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.