用于低功耗BLE传感器实时跌倒检测的多域轻量级Adaboost

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chris Nunez;Tianmin Kong;Ava Hedayatipour
{"title":"用于低功耗BLE传感器实时跌倒检测的多域轻量级Adaboost","authors":"Chris Nunez;Tianmin Kong;Ava Hedayatipour","doi":"10.1109/LSENS.2025.3606290","DOIUrl":null,"url":null,"abstract":"This letter presents a practical and energy-efficient approach to real-time fall detection using a lightweight, interpretable machine learning model on a resource-constrained wearable device. We propose a multidomain learning framework combined with feature-space normalization to enhance generalization across subjects and data sources. A public dataset is augmented with data from a smaller cohort using an articulated skeleton model. To further improve robustness, we employ L2-normalized features. Inertial data are collected at 250 Hz using an Arduino Nano 33 bluetooth low energy, with local threshold-based filtering to reduce power consumption by transmitting only potential fall events. A compact AdaBoostM1 ensemble (50 depth-3 decision trees) trained on both real and skeleton-based data achieved 93% accuracy on a 30% hold-out from the ShimFall&ADL dataset, significantly reducing false positives compared to threshold-only methods without deep learning's computational overhead. This approach can enable interpretable, ultra-low-power, and disposable fall detection systems suitable for elder-care and rehabilitation applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidomain Lightweight Adaboost for Real-Time Fall Detection on Low-Power BLE Sensors\",\"authors\":\"Chris Nunez;Tianmin Kong;Ava Hedayatipour\",\"doi\":\"10.1109/LSENS.2025.3606290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a practical and energy-efficient approach to real-time fall detection using a lightweight, interpretable machine learning model on a resource-constrained wearable device. We propose a multidomain learning framework combined with feature-space normalization to enhance generalization across subjects and data sources. A public dataset is augmented with data from a smaller cohort using an articulated skeleton model. To further improve robustness, we employ L2-normalized features. Inertial data are collected at 250 Hz using an Arduino Nano 33 bluetooth low energy, with local threshold-based filtering to reduce power consumption by transmitting only potential fall events. A compact AdaBoostM1 ensemble (50 depth-3 decision trees) trained on both real and skeleton-based data achieved 93% accuracy on a 30% hold-out from the ShimFall&ADL dataset, significantly reducing false positives compared to threshold-only methods without deep learning's computational overhead. This approach can enable interpretable, ultra-low-power, and disposable fall detection systems suitable for elder-care and rehabilitation applications.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11151102/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11151102/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种实用且节能的方法,可以在资源受限的可穿戴设备上使用轻量级、可解释的机器学习模型进行实时跌倒检测。我们提出了一个结合特征空间规范化的多领域学习框架,以增强跨主题和数据源的泛化。公共数据集使用铰接骨架模型与来自较小队列的数据进行增强。为了进一步提高鲁棒性,我们采用l2归一化特征。惯性数据的采集频率为250hz,使用Arduino Nano 33低功耗蓝牙,采用基于局部阈值的滤波,通过仅传输潜在的跌倒事件来降低功耗。紧凑的AdaBoostM1集成(50棵深度3决策树)在真实和基于骨骼的数据上进行了训练,在ShimFall&ADL数据集的30%保留情况下达到了93%的准确率,与仅阈值方法相比,显著减少了误报,而无需深度学习的计算开销。这种方法可以实现适用于老年人护理和康复应用的可解释、超低功耗和一次性跌倒检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidomain Lightweight Adaboost for Real-Time Fall Detection on Low-Power BLE Sensors
This letter presents a practical and energy-efficient approach to real-time fall detection using a lightweight, interpretable machine learning model on a resource-constrained wearable device. We propose a multidomain learning framework combined with feature-space normalization to enhance generalization across subjects and data sources. A public dataset is augmented with data from a smaller cohort using an articulated skeleton model. To further improve robustness, we employ L2-normalized features. Inertial data are collected at 250 Hz using an Arduino Nano 33 bluetooth low energy, with local threshold-based filtering to reduce power consumption by transmitting only potential fall events. A compact AdaBoostM1 ensemble (50 depth-3 decision trees) trained on both real and skeleton-based data achieved 93% accuracy on a 30% hold-out from the ShimFall&ADL dataset, significantly reducing false positives compared to threshold-only methods without deep learning's computational overhead. This approach can enable interpretable, ultra-low-power, and disposable fall detection systems suitable for elder-care and rehabilitation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信