非光栅区表面键合FBG传感器应变传递模型的分析与仿真验证

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xianhuan Luo;Baowu Zhang;Jianjun Cui;Kai Chen;Yihao Zhang;Lu Peng;Liang Pang;Bo Tang;Pinhong Yang;Depei Zeng
{"title":"非光栅区表面键合FBG传感器应变传递模型的分析与仿真验证","authors":"Xianhuan Luo;Baowu Zhang;Jianjun Cui;Kai Chen;Yihao Zhang;Lu Peng;Liang Pang;Bo Tang;Pinhong Yang;Depei Zeng","doi":"10.1109/JSEN.2025.3597422","DOIUrl":null,"url":null,"abstract":"The surface-bonded fiber Bragg grating (FBG) sensors are extensively utilized in structural health monitoring. During the strain transfer process from the substrate being measured to the FBG sensor, shear deformation occurs within the adhesive layer. Consequently, the strain detected by the FBG sensor differs from that of the substrate, resulting in strain transfer loss. To solve this problem, a relatively simple strain transfer model for the FBG sensor with surface-bonded in the nongrating region was developed. The impact of various parameters on strain transfer efficiency was examined, and the influence laws of parameters, such as the adhesive layer’s elastic modulus, thickness, and length on transfer efficiency, were elucidated. The theoretical model was validated through finite element simulation. This model offers a theoretical foundation for the design optimization and precise calibration of FBG sensors, as well as for strain monitoring in applications, such as bridges and aerospace.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"34813-34818"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Simulation Verification of the Strain Transfer Model for the FBG Sensor With Surface-Bonded in the Nongrating Region\",\"authors\":\"Xianhuan Luo;Baowu Zhang;Jianjun Cui;Kai Chen;Yihao Zhang;Lu Peng;Liang Pang;Bo Tang;Pinhong Yang;Depei Zeng\",\"doi\":\"10.1109/JSEN.2025.3597422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface-bonded fiber Bragg grating (FBG) sensors are extensively utilized in structural health monitoring. During the strain transfer process from the substrate being measured to the FBG sensor, shear deformation occurs within the adhesive layer. Consequently, the strain detected by the FBG sensor differs from that of the substrate, resulting in strain transfer loss. To solve this problem, a relatively simple strain transfer model for the FBG sensor with surface-bonded in the nongrating region was developed. The impact of various parameters on strain transfer efficiency was examined, and the influence laws of parameters, such as the adhesive layer’s elastic modulus, thickness, and length on transfer efficiency, were elucidated. The theoretical model was validated through finite element simulation. This model offers a theoretical foundation for the design optimization and precise calibration of FBG sensors, as well as for strain monitoring in applications, such as bridges and aerospace.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 18\",\"pages\":\"34813-34818\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11126934/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11126934/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

表面键合光纤光栅(FBG)传感器在结构健康监测中有着广泛的应用。在从被测基材到光纤光栅传感器的应变传递过程中,粘接层内发生剪切变形。因此,FBG传感器检测到的应变与衬底的应变不同,导致应变传递损失。为了解决这一问题,建立了一种相对简单的非光栅区表面键合的光纤光栅传感器应变传递模型。考察了各参数对应变传递效率的影响,阐明了粘接层弹性模量、厚度、长度等参数对传递效率的影响规律。通过有限元仿真对理论模型进行了验证。该模型为FBG传感器的设计优化和精确校准以及桥梁和航空航天等应用中的应变监测提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Simulation Verification of the Strain Transfer Model for the FBG Sensor With Surface-Bonded in the Nongrating Region
The surface-bonded fiber Bragg grating (FBG) sensors are extensively utilized in structural health monitoring. During the strain transfer process from the substrate being measured to the FBG sensor, shear deformation occurs within the adhesive layer. Consequently, the strain detected by the FBG sensor differs from that of the substrate, resulting in strain transfer loss. To solve this problem, a relatively simple strain transfer model for the FBG sensor with surface-bonded in the nongrating region was developed. The impact of various parameters on strain transfer efficiency was examined, and the influence laws of parameters, such as the adhesive layer’s elastic modulus, thickness, and length on transfer efficiency, were elucidated. The theoretical model was validated through finite element simulation. This model offers a theoretical foundation for the design optimization and precise calibration of FBG sensors, as well as for strain monitoring in applications, such as bridges and aerospace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信