覆盖作物根道促进玉米根际细菌对干旱的适应

IF 12 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Debjyoti Ghosh, Yijie Shi, Iris M. Zimmermann, Katja Holzhauser, Martin von Bergen, Anne-Kristin Kaster, Sandra Spielvogel, Michaela A. Dippold, Jochen A. Müller, Nico Jehmlich
{"title":"覆盖作物根道促进玉米根际细菌对干旱的适应","authors":"Debjyoti Ghosh,&nbsp;Yijie Shi,&nbsp;Iris M. Zimmermann,&nbsp;Katja Holzhauser,&nbsp;Martin von Bergen,&nbsp;Anne-Kristin Kaster,&nbsp;Sandra Spielvogel,&nbsp;Michaela A. Dippold,&nbsp;Jochen A. Müller,&nbsp;Nico Jehmlich","doi":"10.1111/gcb.70512","DOIUrl":null,"url":null,"abstract":"<p>Increasing drought frequency poses a significant threat to agricultural productivity. A promising strategy to enhance crop resilience against drought is the utilisation of root channels left by winter cover crops, which can improve access to subsoil water and nutrients for subsequent cash crops like maize (<i>Zea mays</i> L.). The impact of drought on bacterial communities inhabiting these root channels remains largely unknown. Here, we investigated drought-induced shifts in maize rhizosphere bacterial communities and their functional adaptation in cover crop root channels across three soil types in northern Germany (Luvisol, Podzol, and Phaeozem) using a multi-omics approach (16S rRNA gene amplicon sequencing, qPCR, and metaproteomics). Our results reveal a preference towards bacterial <i>K</i>-strategists under drought conditions, indicating a shift towards stress-tolerant populations. Under drought stress, the relative abundances of <i>Acidobacteriota</i>, <i>Actinomycetota</i>, <i>Planctomycetota</i>, and <i>Pseudomonadota</i> increased, while <i>Chloroflexota</i>, <i>Methylomirabilota</i>, <i>Ca</i>. Patescibacteria, and <i>Verrucomicrobiota</i> declined. Metaproteomics analyses revealed that drought-stressed aerobic taxa among the <i>Pseudomonadota</i> and <i>Verrucomicrobiota</i> upregulated the glyoxylate cycle, potentially enhancing carbon and energy conservation, and increased antioxidant defences (catalase–glutathione peroxidase and methionine cycle–transsulfuration pathway). These drought-mitigating strategies were especially pronounced in root channels formed by <i>Brassicaceae</i> and <i>Poaceae</i> cover crops in the Luvisol and Podzol soils. These findings demonstrate the functional plasticity of rhizosphere bacterial communities in reused root channels in response to drought, highlighting the potential to leverage microbiome-mediated resilience for agricultural practices.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70512","citationCount":"0","resultStr":"{\"title\":\"Cover Crop Root Channels Promote Bacterial Adaptation to Drought in the Maize Rhizosphere\",\"authors\":\"Debjyoti Ghosh,&nbsp;Yijie Shi,&nbsp;Iris M. Zimmermann,&nbsp;Katja Holzhauser,&nbsp;Martin von Bergen,&nbsp;Anne-Kristin Kaster,&nbsp;Sandra Spielvogel,&nbsp;Michaela A. Dippold,&nbsp;Jochen A. Müller,&nbsp;Nico Jehmlich\",\"doi\":\"10.1111/gcb.70512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing drought frequency poses a significant threat to agricultural productivity. A promising strategy to enhance crop resilience against drought is the utilisation of root channels left by winter cover crops, which can improve access to subsoil water and nutrients for subsequent cash crops like maize (<i>Zea mays</i> L.). The impact of drought on bacterial communities inhabiting these root channels remains largely unknown. Here, we investigated drought-induced shifts in maize rhizosphere bacterial communities and their functional adaptation in cover crop root channels across three soil types in northern Germany (Luvisol, Podzol, and Phaeozem) using a multi-omics approach (16S rRNA gene amplicon sequencing, qPCR, and metaproteomics). Our results reveal a preference towards bacterial <i>K</i>-strategists under drought conditions, indicating a shift towards stress-tolerant populations. Under drought stress, the relative abundances of <i>Acidobacteriota</i>, <i>Actinomycetota</i>, <i>Planctomycetota</i>, and <i>Pseudomonadota</i> increased, while <i>Chloroflexota</i>, <i>Methylomirabilota</i>, <i>Ca</i>. Patescibacteria, and <i>Verrucomicrobiota</i> declined. Metaproteomics analyses revealed that drought-stressed aerobic taxa among the <i>Pseudomonadota</i> and <i>Verrucomicrobiota</i> upregulated the glyoxylate cycle, potentially enhancing carbon and energy conservation, and increased antioxidant defences (catalase–glutathione peroxidase and methionine cycle–transsulfuration pathway). These drought-mitigating strategies were especially pronounced in root channels formed by <i>Brassicaceae</i> and <i>Poaceae</i> cover crops in the Luvisol and Podzol soils. These findings demonstrate the functional plasticity of rhizosphere bacterial communities in reused root channels in response to drought, highlighting the potential to leverage microbiome-mediated resilience for agricultural practices.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 9\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70512\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70512\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70512","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

日益频繁的干旱对农业生产力构成重大威胁。提高作物抗旱能力的一个有希望的策略是利用冬季覆盖作物留下的根系通道,这可以改善玉米等后续经济作物获得地下水和养分的途径(Zea mays .)。干旱对居住在这些根通道中的细菌群落的影响在很大程度上仍然未知。在这里,我们使用多组学方法(16S rRNA基因扩增子测序、qPCR和宏蛋白质组学)研究了干旱诱导的德国北部三种土壤类型(Luvisol、Podzol和Phaeozem)玉米根际细菌群落的变化及其在覆盖作物根通道中的功能适应。我们的研究结果揭示了干旱条件下对细菌k -战略家的偏好,表明向耐应力种群的转变。在干旱胁迫下,酸性菌群、放线菌群、植物菌群和假单胞菌群的相对丰度增加,而氯氟菌群、甲基化菌群、Ca. Patescibacteria和Verrucomicrobiota的相对丰度下降。宏蛋白质组学分析显示,在干旱胁迫下,假单胞菌和Verrucomicrobiota中的需氧类群上调了乙醛酸循环,可能增强了碳和能量的保存,并增强了抗氧化防御(过氧化氢酶-谷胱甘肽过氧化物酶和蛋氨酸循环-转硫途径)。这些抗旱策略在油菜科和禾科覆盖作物在陆壤和灰壤土壤中形成的根通道中表现得尤为明显。这些发现表明,在重复使用的根通道中,根际细菌群落对干旱的功能可塑性,突出了利用微生物群介导的农业实践恢复能力的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cover Crop Root Channels Promote Bacterial Adaptation to Drought in the Maize Rhizosphere

Cover Crop Root Channels Promote Bacterial Adaptation to Drought in the Maize Rhizosphere

Cover Crop Root Channels Promote Bacterial Adaptation to Drought in the Maize Rhizosphere

Increasing drought frequency poses a significant threat to agricultural productivity. A promising strategy to enhance crop resilience against drought is the utilisation of root channels left by winter cover crops, which can improve access to subsoil water and nutrients for subsequent cash crops like maize (Zea mays L.). The impact of drought on bacterial communities inhabiting these root channels remains largely unknown. Here, we investigated drought-induced shifts in maize rhizosphere bacterial communities and their functional adaptation in cover crop root channels across three soil types in northern Germany (Luvisol, Podzol, and Phaeozem) using a multi-omics approach (16S rRNA gene amplicon sequencing, qPCR, and metaproteomics). Our results reveal a preference towards bacterial K-strategists under drought conditions, indicating a shift towards stress-tolerant populations. Under drought stress, the relative abundances of Acidobacteriota, Actinomycetota, Planctomycetota, and Pseudomonadota increased, while Chloroflexota, Methylomirabilota, Ca. Patescibacteria, and Verrucomicrobiota declined. Metaproteomics analyses revealed that drought-stressed aerobic taxa among the Pseudomonadota and Verrucomicrobiota upregulated the glyoxylate cycle, potentially enhancing carbon and energy conservation, and increased antioxidant defences (catalase–glutathione peroxidase and methionine cycle–transsulfuration pathway). These drought-mitigating strategies were especially pronounced in root channels formed by Brassicaceae and Poaceae cover crops in the Luvisol and Podzol soils. These findings demonstrate the functional plasticity of rhizosphere bacterial communities in reused root channels in response to drought, highlighting the potential to leverage microbiome-mediated resilience for agricultural practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信