{"title":"atp依赖的一维运动通过抑制自发的MDA5丝组装来维持免疫稳态。","authors":"Xiao-Peng Han,Ming Rao,Yu Chang,Jun-Yan Zhu,Jun Cheng,Yu-Ting Li,Wu Qiong,Si-Chao Ye,Qiurong Zhang,Shao-Qing Zhang,Ling-Ling Chen,Fajian Hou,Jin Zhong,Jiaquan Liu","doi":"10.1038/s41422-025-01183-8","DOIUrl":null,"url":null,"abstract":"MDA5 is a RIG-I-like receptor (RLR) that recognizes viral double-stranded RNA (dsRNA) to initiate the innate immune response. Its activation requires filament formation along the dsRNA, which triggers the oligomerization of N-terminal caspase activation and recruitment domains. The ATPase activity of MDA5 is critical for immune homeostasis, likely by regulating filament assembly. However, the molecular basis underlying this process remains poorly understood. Here, we show that MDA5 operates as an ATP-hydrolysis-driven motor that translocates along dsRNA in a one-dimensional (1D) manner. Multiple MDA5 motors can cooperatively load onto a single dsRNA, but their movements rarely synchronize, inhibiting spontaneous filament formation and activation. LGP2, a key regulator of MDA5 signaling, recognizes MDA5 motors and blocks their movement, thereby promoting filament assembly through a translocation-directed mechanism. This unique assembly strategy underscores the role of 1D motion in higher-order protein oligomerization and reveals a novel mechanism for maintaining immune homeostasis.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"29 1","pages":""},"PeriodicalIF":25.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATP-dependent one-dimensional movement maintains immune homeostasis by suppressing spontaneous MDA5 filament assembly.\",\"authors\":\"Xiao-Peng Han,Ming Rao,Yu Chang,Jun-Yan Zhu,Jun Cheng,Yu-Ting Li,Wu Qiong,Si-Chao Ye,Qiurong Zhang,Shao-Qing Zhang,Ling-Ling Chen,Fajian Hou,Jin Zhong,Jiaquan Liu\",\"doi\":\"10.1038/s41422-025-01183-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MDA5 is a RIG-I-like receptor (RLR) that recognizes viral double-stranded RNA (dsRNA) to initiate the innate immune response. Its activation requires filament formation along the dsRNA, which triggers the oligomerization of N-terminal caspase activation and recruitment domains. The ATPase activity of MDA5 is critical for immune homeostasis, likely by regulating filament assembly. However, the molecular basis underlying this process remains poorly understood. Here, we show that MDA5 operates as an ATP-hydrolysis-driven motor that translocates along dsRNA in a one-dimensional (1D) manner. Multiple MDA5 motors can cooperatively load onto a single dsRNA, but their movements rarely synchronize, inhibiting spontaneous filament formation and activation. LGP2, a key regulator of MDA5 signaling, recognizes MDA5 motors and blocks their movement, thereby promoting filament assembly through a translocation-directed mechanism. This unique assembly strategy underscores the role of 1D motion in higher-order protein oligomerization and reveals a novel mechanism for maintaining immune homeostasis.\",\"PeriodicalId\":9926,\"journal\":{\"name\":\"Cell Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":25.9000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41422-025-01183-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41422-025-01183-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ATP-dependent one-dimensional movement maintains immune homeostasis by suppressing spontaneous MDA5 filament assembly.
MDA5 is a RIG-I-like receptor (RLR) that recognizes viral double-stranded RNA (dsRNA) to initiate the innate immune response. Its activation requires filament formation along the dsRNA, which triggers the oligomerization of N-terminal caspase activation and recruitment domains. The ATPase activity of MDA5 is critical for immune homeostasis, likely by regulating filament assembly. However, the molecular basis underlying this process remains poorly understood. Here, we show that MDA5 operates as an ATP-hydrolysis-driven motor that translocates along dsRNA in a one-dimensional (1D) manner. Multiple MDA5 motors can cooperatively load onto a single dsRNA, but their movements rarely synchronize, inhibiting spontaneous filament formation and activation. LGP2, a key regulator of MDA5 signaling, recognizes MDA5 motors and blocks their movement, thereby promoting filament assembly through a translocation-directed mechanism. This unique assembly strategy underscores the role of 1D motion in higher-order protein oligomerization and reveals a novel mechanism for maintaining immune homeostasis.
期刊介绍:
Cell Research (CR) is an international journal published by Springer Nature in partnership with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). It focuses on publishing original research articles and reviews in various areas of life sciences, particularly those related to molecular and cell biology. The journal covers a broad range of topics including cell growth, differentiation, and apoptosis; signal transduction; stem cell biology and development; chromatin, epigenetics, and transcription; RNA biology; structural and molecular biology; cancer biology and metabolism; immunity and molecular pathogenesis; molecular and cellular neuroscience; plant molecular and cell biology; and omics, system biology, and synthetic biology. CR is recognized as China's best international journal in life sciences and is part of Springer Nature's prestigious family of Molecular Cell Biology journals.