用于奶牛采食量精确估计的自适应高距离RGB成像

IF 2.9 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
X N Niu,L Y Zhou,Y X Du,W J Hu,Y Zhang,L F Li,M C Li
{"title":"用于奶牛采食量精确估计的自适应高距离RGB成像","authors":"X N Niu,L Y Zhou,Y X Du,W J Hu,Y Zhang,L F Li,M C Li","doi":"10.1093/jas/skaf247","DOIUrl":null,"url":null,"abstract":"This study proposes a method for estimating the total feeding amount in the feeding area of dairy cows based on Red-Green-Blue (RGB) images, with the aim of providing ranch management with a cost-effective and efficient intelligent measurement solution. The method utilizes a stereo camera mounted at a height of 2.95 meters to capture RGB images of different feed piles, constructing a dedicated differential image dataset. In order to effectively exclude the interference of background factors in the feeding scene, we used the U2-Net network to segment these images. Furthermore, we innovatively integrate the self-attention mechanism and multi-scale fusion techniques with ResNet, designing and implementing a deep learning model for estimating the total feeding amount within the camera's field of view. The experimental results show that, within the 0-10kg range, the proposed method achieves the mean absolute error (MAE) of 0.3487kg and the root mean squared error (RMSE) of 0.4456kg, outperforming commonly used methods in real-world scenarios.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"31 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive High-Distance RGB Imaging for Accurate Dairy Cow Feed Intake Estimation1.\",\"authors\":\"X N Niu,L Y Zhou,Y X Du,W J Hu,Y Zhang,L F Li,M C Li\",\"doi\":\"10.1093/jas/skaf247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a method for estimating the total feeding amount in the feeding area of dairy cows based on Red-Green-Blue (RGB) images, with the aim of providing ranch management with a cost-effective and efficient intelligent measurement solution. The method utilizes a stereo camera mounted at a height of 2.95 meters to capture RGB images of different feed piles, constructing a dedicated differential image dataset. In order to effectively exclude the interference of background factors in the feeding scene, we used the U2-Net network to segment these images. Furthermore, we innovatively integrate the self-attention mechanism and multi-scale fusion techniques with ResNet, designing and implementing a deep learning model for estimating the total feeding amount within the camera's field of view. The experimental results show that, within the 0-10kg range, the proposed method achieves the mean absolute error (MAE) of 0.3487kg and the root mean squared error (RMSE) of 0.4456kg, outperforming commonly used methods in real-world scenarios.\",\"PeriodicalId\":14895,\"journal\":{\"name\":\"Journal of animal science\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of animal science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jas/skaf247\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jas/skaf247","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于RGB (Red-Green-Blue)图像的奶牛饲养区总饲食量估算方法,旨在为牧场管理提供一种经济高效的智能测量解决方案。该方法利用安装在2.95米高度的立体摄像机采集不同进料桩的RGB图像,构建专用差分图像数据集。为了有效排除馈送场景中背景因素的干扰,我们使用了U2-Net网络对这些图像进行分割。此外,我们创新地将自注意机制和多尺度融合技术与ResNet相结合,设计并实现了一个深度学习模型,用于估计相机视野内的总摄食量。实验结果表明,在0-10kg范围内,本文方法的平均绝对误差(MAE)为0.3487kg,均方根误差(RMSE)为0.4456kg,优于现实场景中常用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive High-Distance RGB Imaging for Accurate Dairy Cow Feed Intake Estimation1.
This study proposes a method for estimating the total feeding amount in the feeding area of dairy cows based on Red-Green-Blue (RGB) images, with the aim of providing ranch management with a cost-effective and efficient intelligent measurement solution. The method utilizes a stereo camera mounted at a height of 2.95 meters to capture RGB images of different feed piles, constructing a dedicated differential image dataset. In order to effectively exclude the interference of background factors in the feeding scene, we used the U2-Net network to segment these images. Furthermore, we innovatively integrate the self-attention mechanism and multi-scale fusion techniques with ResNet, designing and implementing a deep learning model for estimating the total feeding amount within the camera's field of view. The experimental results show that, within the 0-10kg range, the proposed method achieves the mean absolute error (MAE) of 0.3487kg and the root mean squared error (RMSE) of 0.4456kg, outperforming commonly used methods in real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of animal science
Journal of animal science 农林科学-奶制品与动物科学
CiteScore
4.80
自引率
12.10%
发文量
1589
审稿时长
3 months
期刊介绍: The Journal of Animal Science (JAS) is the premier journal for animal science and serves as the leading source of new knowledge and perspective in this area. JAS publishes more than 500 fully reviewed research articles, invited reviews, technical notes, and letters to the editor each year. Articles published in JAS encompass a broad range of research topics in animal production and fundamental aspects of genetics, nutrition, physiology, and preparation and utilization of animal products. Articles typically report research with beef cattle, companion animals, goats, horses, pigs, and sheep; however, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信