二甲双胍纳米颗粒嵌入自适应酚基水凝胶对氧化应激和铁下沉的脊髓损伤修复作用

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-19 DOI:10.1021/acsnano.5c09794
Chenqian Feng, , , Qiuting Wang, , , Susu Xiao, , , Yuanli Yang, , , Bo Chen, , , Hui Li, , , Min Mu, , , Rangrang Fan, , , Haifeng Chen*, , , Bo Han*, , and , Gang Guo*, 
{"title":"二甲双胍纳米颗粒嵌入自适应酚基水凝胶对氧化应激和铁下沉的脊髓损伤修复作用","authors":"Chenqian Feng,&nbsp;, ,&nbsp;Qiuting Wang,&nbsp;, ,&nbsp;Susu Xiao,&nbsp;, ,&nbsp;Yuanli Yang,&nbsp;, ,&nbsp;Bo Chen,&nbsp;, ,&nbsp;Hui Li,&nbsp;, ,&nbsp;Min Mu,&nbsp;, ,&nbsp;Rangrang Fan,&nbsp;, ,&nbsp;Haifeng Chen*,&nbsp;, ,&nbsp;Bo Han*,&nbsp;, and ,&nbsp;Gang Guo*,&nbsp;","doi":"10.1021/acsnano.5c09794","DOIUrl":null,"url":null,"abstract":"<p >Spinal cord injury (SCI) causes irreversible neurological damage largely due to secondary processes such as ferroptosis and inflammation response, which hinder functional recovery and lack effective targeted treatments. Ferroptosis, an iron-dependent form of cell death driven by oxidative stress, and a pro-inflammatory microenvironment contribute significantly to neuronal loss after SCI. To address these challenges, we developed MCPAD, an injectable, self-healing nanocomposite hydrogel incorporating metformin-loaded PLGA nanoparticles (Met@PLGA NPs) and phenol-derived dynamic cross-linked network (CPAD). This multifunctional platform enables targeted suppression of ferroptosis and immunomodulation. <i>In vitro</i>, MCPAD significantly enhanced neuronal viability by regulating iron homeostasis and upregulating antioxidant defenses. <i>In vivo</i>, it reduced reactive oxygen species (ROS) accumulation, glial scarring, and inflammatory cytokine expression, while promoting axonal regeneration and synaptic remodeling. Treated animals exhibited greatly improved locomotor recovery and tissue preservation. Biochemical assessments confirmed systemic biosafety. These findings demonstrate the therapeutic potential of MCPAD as a biological responsive platform that reprograms the injury microenvironment to support functional neural repair after SCI.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 38","pages":"33960–33980"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Phenol-Based Hydrogel Embedded with Metformin Nanoparticles Targets Oxidative Stress and Ferroptosis for Spinal Cord Injury Repair\",\"authors\":\"Chenqian Feng,&nbsp;, ,&nbsp;Qiuting Wang,&nbsp;, ,&nbsp;Susu Xiao,&nbsp;, ,&nbsp;Yuanli Yang,&nbsp;, ,&nbsp;Bo Chen,&nbsp;, ,&nbsp;Hui Li,&nbsp;, ,&nbsp;Min Mu,&nbsp;, ,&nbsp;Rangrang Fan,&nbsp;, ,&nbsp;Haifeng Chen*,&nbsp;, ,&nbsp;Bo Han*,&nbsp;, and ,&nbsp;Gang Guo*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c09794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spinal cord injury (SCI) causes irreversible neurological damage largely due to secondary processes such as ferroptosis and inflammation response, which hinder functional recovery and lack effective targeted treatments. Ferroptosis, an iron-dependent form of cell death driven by oxidative stress, and a pro-inflammatory microenvironment contribute significantly to neuronal loss after SCI. To address these challenges, we developed MCPAD, an injectable, self-healing nanocomposite hydrogel incorporating metformin-loaded PLGA nanoparticles (Met@PLGA NPs) and phenol-derived dynamic cross-linked network (CPAD). This multifunctional platform enables targeted suppression of ferroptosis and immunomodulation. <i>In vitro</i>, MCPAD significantly enhanced neuronal viability by regulating iron homeostasis and upregulating antioxidant defenses. <i>In vivo</i>, it reduced reactive oxygen species (ROS) accumulation, glial scarring, and inflammatory cytokine expression, while promoting axonal regeneration and synaptic remodeling. Treated animals exhibited greatly improved locomotor recovery and tissue preservation. Biochemical assessments confirmed systemic biosafety. These findings demonstrate the therapeutic potential of MCPAD as a biological responsive platform that reprograms the injury microenvironment to support functional neural repair after SCI.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 38\",\"pages\":\"33960–33980\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c09794\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c09794","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(Spinal cord injury, SCI)主要由铁下垂和炎症反应等继发性过程引起的不可逆神经损伤阻碍了功能恢复,且缺乏有效的靶向治疗。铁凋亡是一种由氧化应激驱动的铁依赖性细胞死亡形式,它和促炎微环境对脊髓损伤后的神经元损失有重要作用。为了解决这些挑战,我们开发了MCPAD,这是一种可注射的、自修复的纳米复合水凝胶,包含二甲双胍负载的PLGA纳米颗粒(Met@PLGA NPs)和酚衍生的动态交联网络(CPAD)。这个多功能平台能够有针对性地抑制铁下垂和免疫调节。在体外,MCPAD通过调节铁稳态和上调抗氧化防御,显著提高神经元活力。在体内,它可以减少活性氧(ROS)的积累、胶质瘢痕和炎症细胞因子的表达,同时促进轴突再生和突触重塑。治疗后的动物运动恢复和组织保存得到了极大的改善。生化评估证实了系统的生物安全性。这些发现证明了MCPAD作为一个生物响应平台的治疗潜力,它可以重编程损伤微环境以支持脊髓损伤后的功能性神经修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptive Phenol-Based Hydrogel Embedded with Metformin Nanoparticles Targets Oxidative Stress and Ferroptosis for Spinal Cord Injury Repair

Adaptive Phenol-Based Hydrogel Embedded with Metformin Nanoparticles Targets Oxidative Stress and Ferroptosis for Spinal Cord Injury Repair

Adaptive Phenol-Based Hydrogel Embedded with Metformin Nanoparticles Targets Oxidative Stress and Ferroptosis for Spinal Cord Injury Repair

Spinal cord injury (SCI) causes irreversible neurological damage largely due to secondary processes such as ferroptosis and inflammation response, which hinder functional recovery and lack effective targeted treatments. Ferroptosis, an iron-dependent form of cell death driven by oxidative stress, and a pro-inflammatory microenvironment contribute significantly to neuronal loss after SCI. To address these challenges, we developed MCPAD, an injectable, self-healing nanocomposite hydrogel incorporating metformin-loaded PLGA nanoparticles (Met@PLGA NPs) and phenol-derived dynamic cross-linked network (CPAD). This multifunctional platform enables targeted suppression of ferroptosis and immunomodulation. In vitro, MCPAD significantly enhanced neuronal viability by regulating iron homeostasis and upregulating antioxidant defenses. In vivo, it reduced reactive oxygen species (ROS) accumulation, glial scarring, and inflammatory cytokine expression, while promoting axonal regeneration and synaptic remodeling. Treated animals exhibited greatly improved locomotor recovery and tissue preservation. Biochemical assessments confirmed systemic biosafety. These findings demonstrate the therapeutic potential of MCPAD as a biological responsive platform that reprograms the injury microenvironment to support functional neural repair after SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信