Shen-Yi Li, Yi Zhang, Qing-Qing Long, Ming-Juan Chen, Si-Yu Wang, Wei-Ying Sun
{"title":"应用经胸三维超声心动图心脏模型评价不同射血分数类型心衰患者左心功能。","authors":"Shen-Yi Li, Yi Zhang, Qing-Qing Long, Ming-Juan Chen, Si-Yu Wang, Wei-Ying Sun","doi":"10.2174/0115734056388350250903130655","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Heart failure (HF) is classified into three types based on left ventricular ejection fraction (LVEF). A newly developed transthoracic threedimensional (3D) echocardiography Heart-Model (HM) offers quick analysis of the volume and function of the left atrium (LA) and left ventricle (LV). This study aimed to determine the value of the HM in HF patients.</p><p><strong>Methods: </strong>A total of 117 patients with HF were divided into three groups according to EF: preserved EF (HFpEF, EF ≥50%), mid-range EF (HFmrEF, EF =41%-49%), and reduced EF (HFrEF, EF ≤40%). The HM was applied to analyze 3D cardiac functional parameters. LVEF was obtained using Simpson's biplane method. The N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration was measured.</p><p><strong>Results: </strong>Significant differences in age, female proportion, body mass index, and comorbidities were observed among the three groups. With decreasing EF across the groups, the 3D volumetric parameters of the LA and LV increased, while LVEF decreased. The LV E/e' was significantly higher in HFrEF patients than in HFpEF patients. LVEF measurement was achieved in significantly less time with the HM compared with the conventional Simpson's biplane method. The NT-proBNP concentration increased in the following pattern: HFrEF > HFmrEF > HFpEF. The NT-proBNP concentration correlated positively with LV volume and negatively with LVEF from both the HM and Simpson's biplane method.</p><p><strong>Conclusion: </strong>LA and LV volumes increase, and the derived LV systolic function decreases with increasing HF severity determined by the HM. The functional parameters measurements provided by the HM are associated with laboratory indicators, indicating the feasibility of using the HM in routine clinical application.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Left Heart Function in Heart Failure Patients with Different Ejection Fraction Types using a Transthoracic Three-dimensional Echocardiography Heart-Model.\",\"authors\":\"Shen-Yi Li, Yi Zhang, Qing-Qing Long, Ming-Juan Chen, Si-Yu Wang, Wei-Ying Sun\",\"doi\":\"10.2174/0115734056388350250903130655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Heart failure (HF) is classified into three types based on left ventricular ejection fraction (LVEF). A newly developed transthoracic threedimensional (3D) echocardiography Heart-Model (HM) offers quick analysis of the volume and function of the left atrium (LA) and left ventricle (LV). This study aimed to determine the value of the HM in HF patients.</p><p><strong>Methods: </strong>A total of 117 patients with HF were divided into three groups according to EF: preserved EF (HFpEF, EF ≥50%), mid-range EF (HFmrEF, EF =41%-49%), and reduced EF (HFrEF, EF ≤40%). The HM was applied to analyze 3D cardiac functional parameters. LVEF was obtained using Simpson's biplane method. The N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration was measured.</p><p><strong>Results: </strong>Significant differences in age, female proportion, body mass index, and comorbidities were observed among the three groups. With decreasing EF across the groups, the 3D volumetric parameters of the LA and LV increased, while LVEF decreased. The LV E/e' was significantly higher in HFrEF patients than in HFpEF patients. LVEF measurement was achieved in significantly less time with the HM compared with the conventional Simpson's biplane method. The NT-proBNP concentration increased in the following pattern: HFrEF > HFmrEF > HFpEF. The NT-proBNP concentration correlated positively with LV volume and negatively with LVEF from both the HM and Simpson's biplane method.</p><p><strong>Conclusion: </strong>LA and LV volumes increase, and the derived LV systolic function decreases with increasing HF severity determined by the HM. The functional parameters measurements provided by the HM are associated with laboratory indicators, indicating the feasibility of using the HM in routine clinical application.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056388350250903130655\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056388350250903130655","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Evaluation of Left Heart Function in Heart Failure Patients with Different Ejection Fraction Types using a Transthoracic Three-dimensional Echocardiography Heart-Model.
Objective: Heart failure (HF) is classified into three types based on left ventricular ejection fraction (LVEF). A newly developed transthoracic threedimensional (3D) echocardiography Heart-Model (HM) offers quick analysis of the volume and function of the left atrium (LA) and left ventricle (LV). This study aimed to determine the value of the HM in HF patients.
Methods: A total of 117 patients with HF were divided into three groups according to EF: preserved EF (HFpEF, EF ≥50%), mid-range EF (HFmrEF, EF =41%-49%), and reduced EF (HFrEF, EF ≤40%). The HM was applied to analyze 3D cardiac functional parameters. LVEF was obtained using Simpson's biplane method. The N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration was measured.
Results: Significant differences in age, female proportion, body mass index, and comorbidities were observed among the three groups. With decreasing EF across the groups, the 3D volumetric parameters of the LA and LV increased, while LVEF decreased. The LV E/e' was significantly higher in HFrEF patients than in HFpEF patients. LVEF measurement was achieved in significantly less time with the HM compared with the conventional Simpson's biplane method. The NT-proBNP concentration increased in the following pattern: HFrEF > HFmrEF > HFpEF. The NT-proBNP concentration correlated positively with LV volume and negatively with LVEF from both the HM and Simpson's biplane method.
Conclusion: LA and LV volumes increase, and the derived LV systolic function decreases with increasing HF severity determined by the HM. The functional parameters measurements provided by the HM are associated with laboratory indicators, indicating the feasibility of using the HM in routine clinical application.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.