磁共振成像预测三阴性乳腺癌亚型的分割变异性和放射组学稳定性。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-09-01 Epub Date: 2025-09-17 DOI:10.1117/1.JMI.12.5.054501
Isabella Cama, Alejandro Guzmán, Cristina Campi, Michele Piana, Karim Lekadir, Sara Garbarino, Oliver Díaz
{"title":"磁共振成像预测三阴性乳腺癌亚型的分割变异性和放射组学稳定性。","authors":"Isabella Cama, Alejandro Guzmán, Cristina Campi, Michele Piana, Karim Lekadir, Sara Garbarino, Oliver Díaz","doi":"10.1117/1.JMI.12.5.054501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Many studies caution against using radiomic features that are sensitive to contouring variability in predictive models for disease stratification. Consequently, metrics such as the intraclass correlation coefficient (ICC) are recommended to guide feature selection based on stability. However, the direct impact of segmentation variability on the performance of predictive models remains underexplored. We examine how segmentation variability affects both feature stability and predictive performance in the radiomics-based classification of triple-negative breast cancer (TNBC) using breast magnetic resonance imaging.</p><p><strong>Approach: </strong>We analyzed 244 images from the Duke dataset, introducing segmentation variability through controlled modifications of manual segmentations. For each segmentation mask, explainable radiomic features were selected using Shapley Additive exPlanations and used to train logistic regression models. Feature stability across segmentations was assessed via ICC, Pearson's correlation, and reliability scores quantifying the relationship between segmentation variability and feature robustness.</p><p><strong>Results: </strong>Model performances in predicting TNBC do not exhibit a significant difference across varying segmentations. The most explicative and predictive features exhibit decreasing ICC as segmentation accuracy decreases. However, their predictive power remains intact due to low ICC combined with high Pearson's correlation. No shared numerical relationship is found between feature stability and segmentation variability among the most predictive features.</p><p><strong>Conclusions: </strong>Moderate segmentation variability has a limited impact on model performance. Although incorporating peritumoral information may reduce feature reproducibility, it does not compromise predictive utility. Notably, feature stability is not a strict prerequisite for predictive relevance, highlighting that exclusive reliance on ICC or stability metrics for feature selection may inadvertently discard informative features.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"054501"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443385/pdf/","citationCount":"0","resultStr":"{\"title\":\"Segmentation variability and radiomics stability for predicting triple-negative breast cancer subtype using magnetic resonance imaging.\",\"authors\":\"Isabella Cama, Alejandro Guzmán, Cristina Campi, Michele Piana, Karim Lekadir, Sara Garbarino, Oliver Díaz\",\"doi\":\"10.1117/1.JMI.12.5.054501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Many studies caution against using radiomic features that are sensitive to contouring variability in predictive models for disease stratification. Consequently, metrics such as the intraclass correlation coefficient (ICC) are recommended to guide feature selection based on stability. However, the direct impact of segmentation variability on the performance of predictive models remains underexplored. We examine how segmentation variability affects both feature stability and predictive performance in the radiomics-based classification of triple-negative breast cancer (TNBC) using breast magnetic resonance imaging.</p><p><strong>Approach: </strong>We analyzed 244 images from the Duke dataset, introducing segmentation variability through controlled modifications of manual segmentations. For each segmentation mask, explainable radiomic features were selected using Shapley Additive exPlanations and used to train logistic regression models. Feature stability across segmentations was assessed via ICC, Pearson's correlation, and reliability scores quantifying the relationship between segmentation variability and feature robustness.</p><p><strong>Results: </strong>Model performances in predicting TNBC do not exhibit a significant difference across varying segmentations. The most explicative and predictive features exhibit decreasing ICC as segmentation accuracy decreases. However, their predictive power remains intact due to low ICC combined with high Pearson's correlation. No shared numerical relationship is found between feature stability and segmentation variability among the most predictive features.</p><p><strong>Conclusions: </strong>Moderate segmentation variability has a limited impact on model performance. Although incorporating peritumoral information may reduce feature reproducibility, it does not compromise predictive utility. Notably, feature stability is not a strict prerequisite for predictive relevance, highlighting that exclusive reliance on ICC or stability metrics for feature selection may inadvertently discard informative features.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 5\",\"pages\":\"054501\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.5.054501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.5.054501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:许多研究警告不要在疾病分层预测模型中使用对轮廓变异性敏感的放射学特征。因此,建议使用诸如类内相关系数(ICC)之类的度量来指导基于稳定性的特征选择。然而,分割可变性对预测模型性能的直接影响仍未得到充分探讨。我们研究了在使用乳房磁共振成像的基于放射组学的三阴性乳腺癌(TNBC)分类中,分割变异性如何影响特征稳定性和预测性能。方法:我们分析了来自杜克大学数据集的244幅图像,通过对人工分割的可控修改引入了分割的可变性。对于每个分割掩模,使用Shapley加性解释选择可解释的放射学特征,并用于训练逻辑回归模型。通过ICC、Pearson相关和可靠性评分来评估分割变异性和特征鲁棒性之间的关系。结果:预测TNBC的模型性能在不同的分割中没有显着差异。随着分割精度的降低,最具解释性和预测性的特征呈现出降低的ICC。然而,由于低ICC结合高Pearson相关性,他们的预测能力仍然完好无损。在最具预测性的特征中,特征稳定性和分割可变性之间没有发现共享的数值关系。结论:中度分割可变性对模型性能的影响有限。虽然合并肿瘤周围信息可能会降低特征的再现性,但它不会损害预测效用。值得注意的是,特征稳定性并不是预测相关性的严格先决条件,强调在特征选择中完全依赖ICC或稳定性度量可能会无意中丢弃信息特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation variability and radiomics stability for predicting triple-negative breast cancer subtype using magnetic resonance imaging.

Purpose: Many studies caution against using radiomic features that are sensitive to contouring variability in predictive models for disease stratification. Consequently, metrics such as the intraclass correlation coefficient (ICC) are recommended to guide feature selection based on stability. However, the direct impact of segmentation variability on the performance of predictive models remains underexplored. We examine how segmentation variability affects both feature stability and predictive performance in the radiomics-based classification of triple-negative breast cancer (TNBC) using breast magnetic resonance imaging.

Approach: We analyzed 244 images from the Duke dataset, introducing segmentation variability through controlled modifications of manual segmentations. For each segmentation mask, explainable radiomic features were selected using Shapley Additive exPlanations and used to train logistic regression models. Feature stability across segmentations was assessed via ICC, Pearson's correlation, and reliability scores quantifying the relationship between segmentation variability and feature robustness.

Results: Model performances in predicting TNBC do not exhibit a significant difference across varying segmentations. The most explicative and predictive features exhibit decreasing ICC as segmentation accuracy decreases. However, their predictive power remains intact due to low ICC combined with high Pearson's correlation. No shared numerical relationship is found between feature stability and segmentation variability among the most predictive features.

Conclusions: Moderate segmentation variability has a limited impact on model performance. Although incorporating peritumoral information may reduce feature reproducibility, it does not compromise predictive utility. Notably, feature stability is not a strict prerequisite for predictive relevance, highlighting that exclusive reliance on ICC or stability metrics for feature selection may inadvertently discard informative features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信