Peter D Price, Sylvie M Parkus, Victoria J Lloyd, Ben T Alston, Sasha L Bradshaw, Sadé Bates, Margaret A Hughes, Steve Paterson, Terry Burke, Iulia Darolti, Andrew Pomiankowski, Alison E Wright
{"title":"裸眼蝇x连锁减数分裂驱动的单细胞结果。","authors":"Peter D Price, Sylvie M Parkus, Victoria J Lloyd, Ben T Alston, Sasha L Bradshaw, Sadé Bates, Margaret A Hughes, Steve Paterson, Terry Burke, Iulia Darolti, Andrew Pomiankowski, Alison E Wright","doi":"10.1371/journal.pgen.1011816","DOIUrl":null,"url":null,"abstract":"<p><p>Sex-linked meiotic drivers limit the inheritance of the alternate sex chromosome in the heterogametic sex, subsequently skewing the offspring sex ratio. They consequently have large impacts on genome evolution, adaptation, and the emergence and maintenance of sexually selected traits. Despite this, our understanding of their molecular basis and consequences for gametogenesis and sex chromosome regulation more broadly has focused on a handful of model organisms, primarily Drosophila and mouse, which are not representative of the broad diversity of reproductive modes and drive systems in nature. Here, we employ single-cell RNA sequencing (scRNA-seq) to investigate a sex-linked meiotic driver in the Malaysian stalk-eyed fly, Teleopsis dalmanni. First, we produce a comprehensive single-cell atlas of the male T. dalmanni gonad and identify major testis cell types. We then provide a comprehensive profile of the cellular and transcriptional landscape of the testis, providing evidence for a lack of complete meiotic sex chromosome inactivation and complex trajectory of dosage compensation. Second, by contrasting single-cell expression data between drive and standard testes, we provide insight into the consequences of a meiotic driver for the transcriptomic landscape of the testis and sex chromosome regulation. Importantly, we show that the presence of a meiotic driver does not perturb fundamental patterns of X-linked regulation. Our results provide insight into how the meiotic driver might bias its transmission to the next generation and highlight genes with perturbed expression as a potential consequence of the disruption of spermatogenesis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 9","pages":"e1011816"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445520/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell consequences of X-linked meiotic drive in stalk-eyed flies.\",\"authors\":\"Peter D Price, Sylvie M Parkus, Victoria J Lloyd, Ben T Alston, Sasha L Bradshaw, Sadé Bates, Margaret A Hughes, Steve Paterson, Terry Burke, Iulia Darolti, Andrew Pomiankowski, Alison E Wright\",\"doi\":\"10.1371/journal.pgen.1011816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sex-linked meiotic drivers limit the inheritance of the alternate sex chromosome in the heterogametic sex, subsequently skewing the offspring sex ratio. They consequently have large impacts on genome evolution, adaptation, and the emergence and maintenance of sexually selected traits. Despite this, our understanding of their molecular basis and consequences for gametogenesis and sex chromosome regulation more broadly has focused on a handful of model organisms, primarily Drosophila and mouse, which are not representative of the broad diversity of reproductive modes and drive systems in nature. Here, we employ single-cell RNA sequencing (scRNA-seq) to investigate a sex-linked meiotic driver in the Malaysian stalk-eyed fly, Teleopsis dalmanni. First, we produce a comprehensive single-cell atlas of the male T. dalmanni gonad and identify major testis cell types. We then provide a comprehensive profile of the cellular and transcriptional landscape of the testis, providing evidence for a lack of complete meiotic sex chromosome inactivation and complex trajectory of dosage compensation. Second, by contrasting single-cell expression data between drive and standard testes, we provide insight into the consequences of a meiotic driver for the transcriptomic landscape of the testis and sex chromosome regulation. Importantly, we show that the presence of a meiotic driver does not perturb fundamental patterns of X-linked regulation. Our results provide insight into how the meiotic driver might bias its transmission to the next generation and highlight genes with perturbed expression as a potential consequence of the disruption of spermatogenesis.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 9\",\"pages\":\"e1011816\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011816\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011816","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Single-cell consequences of X-linked meiotic drive in stalk-eyed flies.
Sex-linked meiotic drivers limit the inheritance of the alternate sex chromosome in the heterogametic sex, subsequently skewing the offspring sex ratio. They consequently have large impacts on genome evolution, adaptation, and the emergence and maintenance of sexually selected traits. Despite this, our understanding of their molecular basis and consequences for gametogenesis and sex chromosome regulation more broadly has focused on a handful of model organisms, primarily Drosophila and mouse, which are not representative of the broad diversity of reproductive modes and drive systems in nature. Here, we employ single-cell RNA sequencing (scRNA-seq) to investigate a sex-linked meiotic driver in the Malaysian stalk-eyed fly, Teleopsis dalmanni. First, we produce a comprehensive single-cell atlas of the male T. dalmanni gonad and identify major testis cell types. We then provide a comprehensive profile of the cellular and transcriptional landscape of the testis, providing evidence for a lack of complete meiotic sex chromosome inactivation and complex trajectory of dosage compensation. Second, by contrasting single-cell expression data between drive and standard testes, we provide insight into the consequences of a meiotic driver for the transcriptomic landscape of the testis and sex chromosome regulation. Importantly, we show that the presence of a meiotic driver does not perturb fundamental patterns of X-linked regulation. Our results provide insight into how the meiotic driver might bias its transmission to the next generation and highlight genes with perturbed expression as a potential consequence of the disruption of spermatogenesis.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.