人工智能在视觉科学中的影响:对进展、新趋势、数据域量化和关键差距的系统回顾。

IF 5.9 2区 医学 Q1 OPHTHALMOLOGY
Colby F Lewallen, Davide Ortolan, Dominik Reichert, Ruchi Sharma, Kapil Bharti
{"title":"人工智能在视觉科学中的影响:对进展、新趋势、数据域量化和关键差距的系统回顾。","authors":"Colby F Lewallen, Davide Ortolan, Dominik Reichert, Ruchi Sharma, Kapil Bharti","doi":"10.1016/j.survophthal.2025.09.014","DOIUrl":null,"url":null,"abstract":"<p><p>The prominence of artificial intelligence (AI) is growing exponentially, yet its implementation across research domains is uneven. To quantify AI trends in vision science, we evaluated over 100,000 PubMed article metadata spanning 35 years. Using Medical Subject Headings (MeSH) terms, we analyzed trends across four prominent ocular diseases: age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. Most articles utilized research techniques from at least one of the following domains: biological models, molecular profiling, image-based analysis, and clinical outcomes. Our quantification reveals that AI prominence is disproportionally concentrated in the image-based analysis domain, and, additionally, among 4 diseases evaluated, AI prevalence in cataract research is lagging. Contributing factors towards these disparities include insufficient data standardization, complex data structures, limited data availability, unresolved ethical concerns, and not gaining meaningful improvements over human-based interpretations. By mapping where AI thrives and where it lags, we offer a quantitative reference for funding agencies, clinicians, and vision scientists. Connecting various research domains with multimodal and generative AI could improve diagnostic utility; enabling earlier diagnosis, personalized therapy, reduced healthcare costs, and accelerate innovation. Future work should move AI in vision science beyond image-centric pattern recognition toward integrative, mechanistic analyses that explain - rather than merely detect - disease.</p>","PeriodicalId":22102,"journal":{"name":"Survey of ophthalmology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of artificial intelligence in vision science: A systematic review of progress, emerging trends, data domain quantification, and critical gaps.\",\"authors\":\"Colby F Lewallen, Davide Ortolan, Dominik Reichert, Ruchi Sharma, Kapil Bharti\",\"doi\":\"10.1016/j.survophthal.2025.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prominence of artificial intelligence (AI) is growing exponentially, yet its implementation across research domains is uneven. To quantify AI trends in vision science, we evaluated over 100,000 PubMed article metadata spanning 35 years. Using Medical Subject Headings (MeSH) terms, we analyzed trends across four prominent ocular diseases: age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. Most articles utilized research techniques from at least one of the following domains: biological models, molecular profiling, image-based analysis, and clinical outcomes. Our quantification reveals that AI prominence is disproportionally concentrated in the image-based analysis domain, and, additionally, among 4 diseases evaluated, AI prevalence in cataract research is lagging. Contributing factors towards these disparities include insufficient data standardization, complex data structures, limited data availability, unresolved ethical concerns, and not gaining meaningful improvements over human-based interpretations. By mapping where AI thrives and where it lags, we offer a quantitative reference for funding agencies, clinicians, and vision scientists. Connecting various research domains with multimodal and generative AI could improve diagnostic utility; enabling earlier diagnosis, personalized therapy, reduced healthcare costs, and accelerate innovation. Future work should move AI in vision science beyond image-centric pattern recognition toward integrative, mechanistic analyses that explain - rather than merely detect - disease.</p>\",\"PeriodicalId\":22102,\"journal\":{\"name\":\"Survey of ophthalmology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey of ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.survophthal.2025.09.014\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.survophthal.2025.09.014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)的重要性呈指数级增长,但其在各个研究领域的实施却参差不齐。为了量化视觉科学中的人工智能趋势,我们评估了35年来超过10万篇PubMed文章元数据。使用医学主题标题(MeSH)术语,我们分析了四种主要眼部疾病的趋势:年龄相关性黄斑变性、糖尿病性视网膜病变、青光眼和白内障。大多数文章利用了以下领域中至少一个领域的研究技术:生物模型、分子谱、基于图像的分析和临床结果。我们的量化结果显示,人工智能突出程度不成比例地集中在基于图像的分析领域,此外,在评估的4种疾病中,人工智能在白内障研究中的流行程度滞后。造成这些差异的因素包括数据标准化不足、复杂的数据结构、有限的数据可用性、未解决的伦理问题,以及没有获得比基于人类的解释有意义的改进。通过绘制人工智能在哪里繁荣和落后的地图,我们为资助机构、临床医生和视觉科学家提供了定量参考。将多个研究领域与多模态和生成式人工智能联系起来可以提高诊断效用;实现早期诊断、个性化治疗、降低医疗成本并加速创新。未来的工作应该使人工智能在视觉科学中超越以图像为中心的模式识别,转向综合的、机制的分析,以解释——而不仅仅是检测——疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of artificial intelligence in vision science: A systematic review of progress, emerging trends, data domain quantification, and critical gaps.

The prominence of artificial intelligence (AI) is growing exponentially, yet its implementation across research domains is uneven. To quantify AI trends in vision science, we evaluated over 100,000 PubMed article metadata spanning 35 years. Using Medical Subject Headings (MeSH) terms, we analyzed trends across four prominent ocular diseases: age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. Most articles utilized research techniques from at least one of the following domains: biological models, molecular profiling, image-based analysis, and clinical outcomes. Our quantification reveals that AI prominence is disproportionally concentrated in the image-based analysis domain, and, additionally, among 4 diseases evaluated, AI prevalence in cataract research is lagging. Contributing factors towards these disparities include insufficient data standardization, complex data structures, limited data availability, unresolved ethical concerns, and not gaining meaningful improvements over human-based interpretations. By mapping where AI thrives and where it lags, we offer a quantitative reference for funding agencies, clinicians, and vision scientists. Connecting various research domains with multimodal and generative AI could improve diagnostic utility; enabling earlier diagnosis, personalized therapy, reduced healthcare costs, and accelerate innovation. Future work should move AI in vision science beyond image-centric pattern recognition toward integrative, mechanistic analyses that explain - rather than merely detect - disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Survey of ophthalmology
Survey of ophthalmology 医学-眼科学
CiteScore
10.30
自引率
2.00%
发文量
138
审稿时长
14.8 weeks
期刊介绍: Survey of Ophthalmology is a clinically oriented review journal designed to keep ophthalmologists up to date. Comprehensive major review articles, written by experts and stringently refereed, integrate the literature on subjects selected for their clinical importance. Survey also includes feature articles, section reviews, book reviews, and abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信