利用单细胞转录组的CellSexID对细胞起源进行计算跟踪。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Huilin Tai, Qian Li, Jingtao Wang, Jiahui Tan, Bowen Zhao, Ryann Lang, Basil J Petrof, Jun Ding
{"title":"利用单细胞转录组的CellSexID对细胞起源进行计算跟踪。","authors":"Huilin Tai, Qian Li, Jingtao Wang, Jiahui Tan, Bowen Zhao, Ryann Lang, Basil J Petrof, Jun Ding","doi":"10.1016/j.crmeth.2025.101181","DOIUrl":null,"url":null,"abstract":"<p><p>Cell tracking in chimeric models is essential yet challenging in developmental biology, regenerative medicine, and transplantation research. Current methods like fluorescent labeling and genetic barcoding are technically demanding, costly, and often impractical for dynamic tissues. We present CellSexID, a computational framework that uses sex as a surrogate marker for cell-origin inference. By training machine-learning models on single-cell transcriptomic data, CellSexID accurately predicts individual cell sex, enabling in silico distinction between donor and recipient cells in sex-mismatched settings. The model identifies minimal sex-linked gene sets through ensemble feature selection and has been validated using public datasets and experimental flow sorting, confirming biological relevance. We demonstrate CellSexID's applicability beyond chimeric models, including organ transplantation and sample demultiplexing. As a practical alternative to physical labeling, CellSexID facilitates precise cell tracking and supports diverse biomedical applications where mixed cellular populations need to be distinguished.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101181"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational tracking of cell origins using CellSexID from single-cell transcriptomes.\",\"authors\":\"Huilin Tai, Qian Li, Jingtao Wang, Jiahui Tan, Bowen Zhao, Ryann Lang, Basil J Petrof, Jun Ding\",\"doi\":\"10.1016/j.crmeth.2025.101181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell tracking in chimeric models is essential yet challenging in developmental biology, regenerative medicine, and transplantation research. Current methods like fluorescent labeling and genetic barcoding are technically demanding, costly, and often impractical for dynamic tissues. We present CellSexID, a computational framework that uses sex as a surrogate marker for cell-origin inference. By training machine-learning models on single-cell transcriptomic data, CellSexID accurately predicts individual cell sex, enabling in silico distinction between donor and recipient cells in sex-mismatched settings. The model identifies minimal sex-linked gene sets through ensemble feature selection and has been validated using public datasets and experimental flow sorting, confirming biological relevance. We demonstrate CellSexID's applicability beyond chimeric models, including organ transplantation and sample demultiplexing. As a practical alternative to physical labeling, CellSexID facilitates precise cell tracking and supports diverse biomedical applications where mixed cellular populations need to be distinguished.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101181\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

嵌合模型中的细胞跟踪在发育生物学、再生医学和移植研究中是必不可少的,但也是具有挑战性的。目前的方法,如荧光标记和基因条形码在技术上要求很高,成本高昂,而且对动态组织来说往往不切实际。我们提出CellSexID,这是一个使用性别作为细胞起源推断的替代标记的计算框架。通过在单细胞转录组学数据上训练机器学习模型,CellSexID可以准确地预测单个细胞的性别,从而在性别不匹配的情况下实现供体细胞和受体细胞的计算机区分。该模型通过集合特征选择识别最小的性别连锁基因集,并已使用公共数据集和实验流排序进行验证,确认了生物学相关性。我们证明了CellSexID在嵌合模型之外的适用性,包括器官移植和样本解复用。作为物理标记的实用替代方案,CellSexID有助于精确的细胞跟踪,并支持需要区分混合细胞群的各种生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational tracking of cell origins using CellSexID from single-cell transcriptomes.

Cell tracking in chimeric models is essential yet challenging in developmental biology, regenerative medicine, and transplantation research. Current methods like fluorescent labeling and genetic barcoding are technically demanding, costly, and often impractical for dynamic tissues. We present CellSexID, a computational framework that uses sex as a surrogate marker for cell-origin inference. By training machine-learning models on single-cell transcriptomic data, CellSexID accurately predicts individual cell sex, enabling in silico distinction between donor and recipient cells in sex-mismatched settings. The model identifies minimal sex-linked gene sets through ensemble feature selection and has been validated using public datasets and experimental flow sorting, confirming biological relevance. We demonstrate CellSexID's applicability beyond chimeric models, including organ transplantation and sample demultiplexing. As a practical alternative to physical labeling, CellSexID facilitates precise cell tracking and supports diverse biomedical applications where mixed cellular populations need to be distinguished.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信