Elise Malard, Benoît Bernay, Jérôme Toutain, Samantha Ballesta, Marie Lévêque, Julien Pontin, Samuel Valable, Myriam Bernaudin, Laurent Chatre
{"title":"在胶质母细胞瘤模型中,锰(III)四苯甲酸卟啉(MnTBAP)抑制硫化物:醌氧化还原酶的表达并靶向硫氧化还原系统。","authors":"Elise Malard, Benoît Bernay, Jérôme Toutain, Samantha Ballesta, Marie Lévêque, Julien Pontin, Samuel Valable, Myriam Bernaudin, Laurent Chatre","doi":"10.1080/13510002.2025.2557081","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The adaptation of the redox system and bioenergetics is a major factor contributing to cancer metabolism. Redox therapy is promising but still requires molecular studies that consider the reactive species interactome (RSI) concept, which integrates reactive oxygen, nitrogen, sulfur, carbonyl species, and redox enzymes. Our aim was to decipher the role of the RSI in glioblastoma (GBM), including by challenging the RSI with the MnTBAP redox agent.</p><p><strong>Methods: </strong>The effects of MnTBAP on the redox system and bioenergetics were investigated on several GBM models, namely <i>in vitro</i> 2D culture, <i>in vitro</i> 3D culture with two human GBM tumoroids, and <i>in vivo</i> preclinical model, which included male and female comparisons.</p><p><strong>Results: </strong>We show - for the first time - that MnTBAP represses the sulfide:quinone oxidoreductase (SQOR) involved in the sulfur metabolism and bioenergetics, and targets the RSI through the sulfido-redox system. Through <i>in vitro</i> silencing and overexpression approaches, we also demonstrate that SQOR contributed to GBM cell growth and that its decrease is involved in the molecular effect of MnTBAP. Consequently, MnTBAP induces a switch between apoptosis, uncontrolled necrosis, and ferroptosis depending on the glioblastoma models.</p><p><strong>Conclusion: </strong>Our findings represent the next step in establishing a better understanding of redox biology in the context of GBM.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2557081"},"PeriodicalIF":7.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) represses sulfide:quinone oxidoreductase expression and targets the sulfido-redox system in glioblastoma models.\",\"authors\":\"Elise Malard, Benoît Bernay, Jérôme Toutain, Samantha Ballesta, Marie Lévêque, Julien Pontin, Samuel Valable, Myriam Bernaudin, Laurent Chatre\",\"doi\":\"10.1080/13510002.2025.2557081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The adaptation of the redox system and bioenergetics is a major factor contributing to cancer metabolism. Redox therapy is promising but still requires molecular studies that consider the reactive species interactome (RSI) concept, which integrates reactive oxygen, nitrogen, sulfur, carbonyl species, and redox enzymes. Our aim was to decipher the role of the RSI in glioblastoma (GBM), including by challenging the RSI with the MnTBAP redox agent.</p><p><strong>Methods: </strong>The effects of MnTBAP on the redox system and bioenergetics were investigated on several GBM models, namely <i>in vitro</i> 2D culture, <i>in vitro</i> 3D culture with two human GBM tumoroids, and <i>in vivo</i> preclinical model, which included male and female comparisons.</p><p><strong>Results: </strong>We show - for the first time - that MnTBAP represses the sulfide:quinone oxidoreductase (SQOR) involved in the sulfur metabolism and bioenergetics, and targets the RSI through the sulfido-redox system. Through <i>in vitro</i> silencing and overexpression approaches, we also demonstrate that SQOR contributed to GBM cell growth and that its decrease is involved in the molecular effect of MnTBAP. Consequently, MnTBAP induces a switch between apoptosis, uncontrolled necrosis, and ferroptosis depending on the glioblastoma models.</p><p><strong>Conclusion: </strong>Our findings represent the next step in establishing a better understanding of redox biology in the context of GBM.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"2557081\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2025.2557081\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2557081","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) represses sulfide:quinone oxidoreductase expression and targets the sulfido-redox system in glioblastoma models.
Background: The adaptation of the redox system and bioenergetics is a major factor contributing to cancer metabolism. Redox therapy is promising but still requires molecular studies that consider the reactive species interactome (RSI) concept, which integrates reactive oxygen, nitrogen, sulfur, carbonyl species, and redox enzymes. Our aim was to decipher the role of the RSI in glioblastoma (GBM), including by challenging the RSI with the MnTBAP redox agent.
Methods: The effects of MnTBAP on the redox system and bioenergetics were investigated on several GBM models, namely in vitro 2D culture, in vitro 3D culture with two human GBM tumoroids, and in vivo preclinical model, which included male and female comparisons.
Results: We show - for the first time - that MnTBAP represses the sulfide:quinone oxidoreductase (SQOR) involved in the sulfur metabolism and bioenergetics, and targets the RSI through the sulfido-redox system. Through in vitro silencing and overexpression approaches, we also demonstrate that SQOR contributed to GBM cell growth and that its decrease is involved in the molecular effect of MnTBAP. Consequently, MnTBAP induces a switch between apoptosis, uncontrolled necrosis, and ferroptosis depending on the glioblastoma models.
Conclusion: Our findings represent the next step in establishing a better understanding of redox biology in the context of GBM.
期刊介绍:
Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included.
While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.