通过综合脂质组学和转录组学分析揭示萌发蓖麻种子中ZnO-NPs启动驱动的耐盐性。

IF 5.7 2区 生物学 Q1 PLANT SCIENCES
Peilin Han , Lijuan Dai , Bing Gao , Jinji Han , Yingxin Han , Yixuan Wang , Qiuying Pang , Jixiang Lin , Jinghong Wang
{"title":"通过综合脂质组学和转录组学分析揭示萌发蓖麻种子中ZnO-NPs启动驱动的耐盐性。","authors":"Peilin Han ,&nbsp;Lijuan Dai ,&nbsp;Bing Gao ,&nbsp;Jinji Han ,&nbsp;Yingxin Han ,&nbsp;Yixuan Wang ,&nbsp;Qiuying Pang ,&nbsp;Jixiang Lin ,&nbsp;Jinghong Wang","doi":"10.1016/j.plaphy.2025.110525","DOIUrl":null,"url":null,"abstract":"<div><div>Castor (<em>Ricinus communis</em>) is a globally important oilseed crop whose germination is highly sensitive to soil salinity. We assessed whether 24 h priming with 1000 mg L<sup>−1</sup> ZnO-NPs (Z2) enhances salt tolerance compared to unprimed controls (Z1) under 0–150 mM NaCl (S1–S4). Under 100 mM NaCl (S3), Z2 seeds displayed a cumulative germination percentage nearly 1.5-fold higher than the control and a 26.1 % reduction in malondialdehyde (MDA) content. Lipidomic profiling revealed ZnO-NPs priming stabilized membrane fluidity by elevating phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidylglycerol (PG), and lysophosphatidylcholine (LPC) levels and increasing overall lipid unsaturation. Transcriptomic analysis identified 349 differentially expressed genes between (Z2, S3) and (Z1, S3), and integrated pathway analysis demonstrated upregulation of “glyoxylate and dicarboxylate” and “starch and sucrose” metabolism to drive lipid-to-carbohydrate conversion. Key lipase, nonspecific lipid transfer proteins (nsLTPs), and oleosin genes were also induced, and MAPK signaling was enhanced, to sustain germination vigor under salt stress. These dual mechanisms—antioxidant-mediated membrane protection and transcriptome-guided regulation of metabolic pathways—underscore the potential of ZnO-NPs priming to enhance castor seed resilience under salt stress.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"229 ","pages":"Article 110525"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling ZnO-NPs priming–driven salt tolerance in germinating castor seeds via integrated lipidomic and transcriptomic analyses\",\"authors\":\"Peilin Han ,&nbsp;Lijuan Dai ,&nbsp;Bing Gao ,&nbsp;Jinji Han ,&nbsp;Yingxin Han ,&nbsp;Yixuan Wang ,&nbsp;Qiuying Pang ,&nbsp;Jixiang Lin ,&nbsp;Jinghong Wang\",\"doi\":\"10.1016/j.plaphy.2025.110525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Castor (<em>Ricinus communis</em>) is a globally important oilseed crop whose germination is highly sensitive to soil salinity. We assessed whether 24 h priming with 1000 mg L<sup>−1</sup> ZnO-NPs (Z2) enhances salt tolerance compared to unprimed controls (Z1) under 0–150 mM NaCl (S1–S4). Under 100 mM NaCl (S3), Z2 seeds displayed a cumulative germination percentage nearly 1.5-fold higher than the control and a 26.1 % reduction in malondialdehyde (MDA) content. Lipidomic profiling revealed ZnO-NPs priming stabilized membrane fluidity by elevating phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidylglycerol (PG), and lysophosphatidylcholine (LPC) levels and increasing overall lipid unsaturation. Transcriptomic analysis identified 349 differentially expressed genes between (Z2, S3) and (Z1, S3), and integrated pathway analysis demonstrated upregulation of “glyoxylate and dicarboxylate” and “starch and sucrose” metabolism to drive lipid-to-carbohydrate conversion. Key lipase, nonspecific lipid transfer proteins (nsLTPs), and oleosin genes were also induced, and MAPK signaling was enhanced, to sustain germination vigor under salt stress. These dual mechanisms—antioxidant-mediated membrane protection and transcriptome-guided regulation of metabolic pathways—underscore the potential of ZnO-NPs priming to enhance castor seed resilience under salt stress.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"229 \",\"pages\":\"Article 110525\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825010538\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825010538","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蓖麻(Ricinus communis)是全球重要的油料作物,其萌发对土壤盐分高度敏感。我们评估了1000 mg L-1 ZnO-NPs (Z2)在0-150 mM NaCl (S1-S4)条件下,与未启动对照(Z1)相比,Z2是否增强了24 h的耐盐性。在100 mM NaCl (S3)处理下,Z2种子的累计发芽率比对照提高了近1.5倍,丙二醛(MDA)含量降低了26.1%。脂质组学分析显示,ZnO-NPs通过提高磷脂酰胆碱(PC)、磷脂酸(PA)、磷脂酰乙醇胺(PE)、磷脂酰甘油(PG)和溶血磷脂酰胆碱(LPC)水平和增加总体脂质不饱和度来稳定膜流动性。转录组学分析确定了(Z2, S3)和(Z1, S3)之间349个差异表达基因,综合途径分析表明,“乙醛酸盐和二羧酸盐”和“淀粉和蔗糖”代谢上调,驱动脂质到碳水化合物的转化。通过诱导关键脂肪酶、非特异性脂质转移蛋白(nsLTPs)和油蛋白基因,增强MAPK信号传导,维持盐胁迫下的萌发活力。这些双重机制——抗氧化剂介导的膜保护和转录组引导的代谢途径调控——强调了ZnO-NPs启动增强蓖麻种子在盐胁迫下的抗逆性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling ZnO-NPs priming–driven salt tolerance in germinating castor seeds via integrated lipidomic and transcriptomic analyses

Unraveling ZnO-NPs priming–driven salt tolerance in germinating castor seeds via integrated lipidomic and transcriptomic analyses
Castor (Ricinus communis) is a globally important oilseed crop whose germination is highly sensitive to soil salinity. We assessed whether 24 h priming with 1000 mg L−1 ZnO-NPs (Z2) enhances salt tolerance compared to unprimed controls (Z1) under 0–150 mM NaCl (S1–S4). Under 100 mM NaCl (S3), Z2 seeds displayed a cumulative germination percentage nearly 1.5-fold higher than the control and a 26.1 % reduction in malondialdehyde (MDA) content. Lipidomic profiling revealed ZnO-NPs priming stabilized membrane fluidity by elevating phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidylglycerol (PG), and lysophosphatidylcholine (LPC) levels and increasing overall lipid unsaturation. Transcriptomic analysis identified 349 differentially expressed genes between (Z2, S3) and (Z1, S3), and integrated pathway analysis demonstrated upregulation of “glyoxylate and dicarboxylate” and “starch and sucrose” metabolism to drive lipid-to-carbohydrate conversion. Key lipase, nonspecific lipid transfer proteins (nsLTPs), and oleosin genes were also induced, and MAPK signaling was enhanced, to sustain germination vigor under salt stress. These dual mechanisms—antioxidant-mediated membrane protection and transcriptome-guided regulation of metabolic pathways—underscore the potential of ZnO-NPs priming to enhance castor seed resilience under salt stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信