{"title":"鸟嘌呤- ii核开关三级结构揭示的配体特异性和适应性。","authors":"Hongcheng Li, Xin Shen, Xiaochen Xu, Xiaoqing Tai, Mengqi He, Jinzhu Zhang, Aiming Ren","doi":"10.1093/nar/gkaf884","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive understanding of the fundamental principles governing RNA-small molecule interactions is crucial for advancing RNA-targeting therapeutics with small molecules. Riboswitches, a class of noncoding RNAs, regulate gene expression by direct interaction with small-molecule metabolites. In this work, we report an in-depth structure-based investigation of a newly identified riboswitch, Guanine-II, which, despite sharing a conserved scaffold with the Guanine-I riboswitch, exhibits strikingly distinct small molecule ligand-binding characteristics. Through a comprehensive structural analysis of the Guanine-II riboswitch bound to various guanine analogs, combined with comparative studies of other guanine riboswitch variants, including Guanine-I and Xanthine-II riboswitches, as well as isothermal titration calorimetry, we reveal local structural rearrangements that precisely modulate small-molecule ligand adaptability. We further demonstrate that subtle differences in the composition and peripheral architecture of the binding pocket are key determinants of ligand-binding specificity. Additionally, based on the similarity in ligand recognition patterns with the tetrahydrofolate-II riboswitch, we identified additional compounds that bind to the Guanine-II riboswitch through a structure-guided rational search, providing valuable structural insights for the discovery of small molecules targeting RNA.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 17","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445698/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ligand specificity and adaptability revealed by the first Guanine-II riboswitch tertiary structure.\",\"authors\":\"Hongcheng Li, Xin Shen, Xiaochen Xu, Xiaoqing Tai, Mengqi He, Jinzhu Zhang, Aiming Ren\",\"doi\":\"10.1093/nar/gkaf884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A comprehensive understanding of the fundamental principles governing RNA-small molecule interactions is crucial for advancing RNA-targeting therapeutics with small molecules. Riboswitches, a class of noncoding RNAs, regulate gene expression by direct interaction with small-molecule metabolites. In this work, we report an in-depth structure-based investigation of a newly identified riboswitch, Guanine-II, which, despite sharing a conserved scaffold with the Guanine-I riboswitch, exhibits strikingly distinct small molecule ligand-binding characteristics. Through a comprehensive structural analysis of the Guanine-II riboswitch bound to various guanine analogs, combined with comparative studies of other guanine riboswitch variants, including Guanine-I and Xanthine-II riboswitches, as well as isothermal titration calorimetry, we reveal local structural rearrangements that precisely modulate small-molecule ligand adaptability. We further demonstrate that subtle differences in the composition and peripheral architecture of the binding pocket are key determinants of ligand-binding specificity. Additionally, based on the similarity in ligand recognition patterns with the tetrahydrofolate-II riboswitch, we identified additional compounds that bind to the Guanine-II riboswitch through a structure-guided rational search, providing valuable structural insights for the discovery of small molecules targeting RNA.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 17\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445698/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf884\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf884","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ligand specificity and adaptability revealed by the first Guanine-II riboswitch tertiary structure.
A comprehensive understanding of the fundamental principles governing RNA-small molecule interactions is crucial for advancing RNA-targeting therapeutics with small molecules. Riboswitches, a class of noncoding RNAs, regulate gene expression by direct interaction with small-molecule metabolites. In this work, we report an in-depth structure-based investigation of a newly identified riboswitch, Guanine-II, which, despite sharing a conserved scaffold with the Guanine-I riboswitch, exhibits strikingly distinct small molecule ligand-binding characteristics. Through a comprehensive structural analysis of the Guanine-II riboswitch bound to various guanine analogs, combined with comparative studies of other guanine riboswitch variants, including Guanine-I and Xanthine-II riboswitches, as well as isothermal titration calorimetry, we reveal local structural rearrangements that precisely modulate small-molecule ligand adaptability. We further demonstrate that subtle differences in the composition and peripheral architecture of the binding pocket are key determinants of ligand-binding specificity. Additionally, based on the similarity in ligand recognition patterns with the tetrahydrofolate-II riboswitch, we identified additional compounds that bind to the Guanine-II riboswitch through a structure-guided rational search, providing valuable structural insights for the discovery of small molecules targeting RNA.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.