Maximilian Hinsen, Armin Nagel, Rafael Heiss, Matthias May, Marco Wiesmueller, Claudius Mathy, Martin Zeilinger, Joachim Hornung, Sarina Mueller, Michael Uder, Markus Kopp
{"title":"基于深度学习的0.55T MRI加速和去噪增强前庭神经鞘瘤造影剂后的显著性。","authors":"Maximilian Hinsen, Armin Nagel, Rafael Heiss, Matthias May, Marco Wiesmueller, Claudius Mathy, Martin Zeilinger, Joachim Hornung, Sarina Mueller, Michael Uder, Markus Kopp","doi":"10.1007/s00234-025-03758-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Deep-learning (DL) based MRI denoising techniques promise improved image quality and shorter examination times. This advancement is particularly beneficial for 0.55T MRI, where the inherently lower signal-to-noise (SNR) ratio can compromise image quality. Sufficient SNR is crucial for the reliable detection of vestibular schwannoma (VS). The objective of this study is to evaluate the VS conspicuity and acquisition time (TA) of 0.55T MRI examinations with contrast agents using a DL-denoising algorithm.</p><p><strong>Materials and methods: </strong>From January 2024 to October 2024, we retrospectively included 30 patients with VS (9 women). We acquired a clinical reference protocol of the cerebellopontine angle containing a T1w fat-saturated (fs) axial (number of signal averages [NSA] 4) and a T1w Spectral Attenuated Inversion Recovery (SPAIR) coronal (NSA 2) sequence after contrast agent (CA) application without advanced DL-based denoising (w/o DL). We reconstructed the T1w fs CA sequence axial and the T1w SPAIR CA coronal with full DL-denoising mode without change of NSA, and secondly with 1 NSA for T1w fs CA axial and T1w SPAIR coronal (DL&1NSA). Each sequence was rated on a 5-point Likert scale (1: insufficient, 3: moderate, clinically sufficient; 5: perfect) for: overall image quality; VS conspicuity, and artifacts. Secondly, we analyzed the reliability of the size measurements. Two radiologists specializing in head and neck imaging performed the reading and measurements. The Wilcoxon Signed-Rank Test was used for non-parametric statistical comparison.</p><p><strong>Results: </strong>The DL&4NSA axial/coronal study sequence achieved the highest overall IQ (median 4.9). The image quality (IQ) for DL&1NSA was higher (M: 4.0) than for the reference sequence (w/o DL; median 4.0 versus 3.5, each p < 0.01). Similarly, the VS conspicuity was best for DL&4NSA (M: 4.9), decreased for DL&1NSA (M: 4.1), and was lower but still sufficient for w/o DL (M: 3.7, each p < 0.01). The TA for the axial and coronal post-contrast sequences was 8:59 minutes for DL&4NSA and w/o DL and decreased to 3:24 minutes with DL&1NSA.</p><p><strong>Conclusions: </strong>This study underlines that advanced DL-based denoising techniques can reduce the examination time by more than half while simultaneously improving image quality.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based acceleration and denoising of 0.55T MRI for enhanced conspicuity of vestibular Schwannoma post contrast administration.\",\"authors\":\"Maximilian Hinsen, Armin Nagel, Rafael Heiss, Matthias May, Marco Wiesmueller, Claudius Mathy, Martin Zeilinger, Joachim Hornung, Sarina Mueller, Michael Uder, Markus Kopp\",\"doi\":\"10.1007/s00234-025-03758-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Deep-learning (DL) based MRI denoising techniques promise improved image quality and shorter examination times. This advancement is particularly beneficial for 0.55T MRI, where the inherently lower signal-to-noise (SNR) ratio can compromise image quality. Sufficient SNR is crucial for the reliable detection of vestibular schwannoma (VS). The objective of this study is to evaluate the VS conspicuity and acquisition time (TA) of 0.55T MRI examinations with contrast agents using a DL-denoising algorithm.</p><p><strong>Materials and methods: </strong>From January 2024 to October 2024, we retrospectively included 30 patients with VS (9 women). We acquired a clinical reference protocol of the cerebellopontine angle containing a T1w fat-saturated (fs) axial (number of signal averages [NSA] 4) and a T1w Spectral Attenuated Inversion Recovery (SPAIR) coronal (NSA 2) sequence after contrast agent (CA) application without advanced DL-based denoising (w/o DL). We reconstructed the T1w fs CA sequence axial and the T1w SPAIR CA coronal with full DL-denoising mode without change of NSA, and secondly with 1 NSA for T1w fs CA axial and T1w SPAIR coronal (DL&1NSA). Each sequence was rated on a 5-point Likert scale (1: insufficient, 3: moderate, clinically sufficient; 5: perfect) for: overall image quality; VS conspicuity, and artifacts. Secondly, we analyzed the reliability of the size measurements. Two radiologists specializing in head and neck imaging performed the reading and measurements. The Wilcoxon Signed-Rank Test was used for non-parametric statistical comparison.</p><p><strong>Results: </strong>The DL&4NSA axial/coronal study sequence achieved the highest overall IQ (median 4.9). The image quality (IQ) for DL&1NSA was higher (M: 4.0) than for the reference sequence (w/o DL; median 4.0 versus 3.5, each p < 0.01). Similarly, the VS conspicuity was best for DL&4NSA (M: 4.9), decreased for DL&1NSA (M: 4.1), and was lower but still sufficient for w/o DL (M: 3.7, each p < 0.01). The TA for the axial and coronal post-contrast sequences was 8:59 minutes for DL&4NSA and w/o DL and decreased to 3:24 minutes with DL&1NSA.</p><p><strong>Conclusions: </strong>This study underlines that advanced DL-based denoising techniques can reduce the examination time by more than half while simultaneously improving image quality.</p>\",\"PeriodicalId\":19422,\"journal\":{\"name\":\"Neuroradiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-025-03758-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-025-03758-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Deep learning-based acceleration and denoising of 0.55T MRI for enhanced conspicuity of vestibular Schwannoma post contrast administration.
Background and purpose: Deep-learning (DL) based MRI denoising techniques promise improved image quality and shorter examination times. This advancement is particularly beneficial for 0.55T MRI, where the inherently lower signal-to-noise (SNR) ratio can compromise image quality. Sufficient SNR is crucial for the reliable detection of vestibular schwannoma (VS). The objective of this study is to evaluate the VS conspicuity and acquisition time (TA) of 0.55T MRI examinations with contrast agents using a DL-denoising algorithm.
Materials and methods: From January 2024 to October 2024, we retrospectively included 30 patients with VS (9 women). We acquired a clinical reference protocol of the cerebellopontine angle containing a T1w fat-saturated (fs) axial (number of signal averages [NSA] 4) and a T1w Spectral Attenuated Inversion Recovery (SPAIR) coronal (NSA 2) sequence after contrast agent (CA) application without advanced DL-based denoising (w/o DL). We reconstructed the T1w fs CA sequence axial and the T1w SPAIR CA coronal with full DL-denoising mode without change of NSA, and secondly with 1 NSA for T1w fs CA axial and T1w SPAIR coronal (DL&1NSA). Each sequence was rated on a 5-point Likert scale (1: insufficient, 3: moderate, clinically sufficient; 5: perfect) for: overall image quality; VS conspicuity, and artifacts. Secondly, we analyzed the reliability of the size measurements. Two radiologists specializing in head and neck imaging performed the reading and measurements. The Wilcoxon Signed-Rank Test was used for non-parametric statistical comparison.
Results: The DL&4NSA axial/coronal study sequence achieved the highest overall IQ (median 4.9). The image quality (IQ) for DL&1NSA was higher (M: 4.0) than for the reference sequence (w/o DL; median 4.0 versus 3.5, each p < 0.01). Similarly, the VS conspicuity was best for DL&4NSA (M: 4.9), decreased for DL&1NSA (M: 4.1), and was lower but still sufficient for w/o DL (M: 3.7, each p < 0.01). The TA for the axial and coronal post-contrast sequences was 8:59 minutes for DL&4NSA and w/o DL and decreased to 3:24 minutes with DL&1NSA.
Conclusions: This study underlines that advanced DL-based denoising techniques can reduce the examination time by more than half while simultaneously improving image quality.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.