Adéla Diepoltová, Daria Elzbieta Nawrot, Ondřej Janďourek, Martin Juhás, Pavel Bárta, Pavlína Vávrová, Vinod Sukanth Kumar Pallabothula, Paulína Dudášová-Hatoková, Marcela Vejsová, Barbora Voxová, Jan Österreicher, Petra Štěrbová-Kovaříková, Petr Nachtigal, Jan Zitko, Klára Konečná
{"title":"含有2-氨基恶唑的新型氯化杀菌衍生物增强了粘菌素对多重耐药鲍曼不动杆菌的抗菌作用。","authors":"Adéla Diepoltová, Daria Elzbieta Nawrot, Ondřej Janďourek, Martin Juhás, Pavel Bárta, Pavlína Vávrová, Vinod Sukanth Kumar Pallabothula, Paulína Dudášová-Hatoková, Marcela Vejsová, Barbora Voxová, Jan Österreicher, Petra Štěrbová-Kovaříková, Petr Nachtigal, Jan Zitko, Klára Konečná","doi":"10.1007/s00430-025-00854-y","DOIUrl":null,"url":null,"abstract":"<p><p>This comprehensive study provides insight into the antibacterial action of a recently published 2-chloro-N-(oxazol-2-yl)isonicotinamide (AB15), intending to assess its potential as a candidate adjuvant molecule to support existing antibacterial drugs. Within the determination of the antibacterial effect, a promising activity against a member of the ESKAPE group with reduced treatment options, biofilm producer, Acinetobacter baumannii, was recognized (MIC of AB15 ranged from 15.63 to 62.5 µM). In addition, AB15 exhibited bactericidal activity and non/low-toxicity in vitro (IC<sub>50</sub> > 1000 µM using HK-2 cells) and in vivo (LD<sub>50</sub> > 500 mg/kg of body weight of the Galleria mellonella larvae, for both intra-hemocoel and per oral administration routes). Checkerboard assay revealed additive and synergistic interactions of AB15 and last-resort antibiotic drug, colistin (CST). Moreover, attention was also given to a frequently overlooked antibiofilm activity - the ability to suppress bacterial dissemination from microbial biofilms, and parameter MBDC (minimum biofilm dissemination concentration) was introduced. The study of the antibiofilm activity of AB15 and CST, both acting individually, or in AB15 + CST combination, revealed that AB15 has significant potential to suppress bacterial dissemination from biofilm formed by a clinical isolate Acinetobacter baumannii and that it contributes to this effect when combined with CST. Finally, AB15 + CST combination demonstrated significantly greater biocompatibility towards human erythrocytes than CST acting individually at an equivalent antibiofilm-effective concentration. The role of AB15 as a promising adjuvant molecule to CST is also supported by its distinct mechanism of action, which reduces the risk of antimicrobial resistance emergence. To conclude, AB15 exhibits several essential attributes that support its designation as a promising antibiotic adjuvant.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"44"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449380/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new bactericidal chlorinated derivative containing 2-aminooxazole potentiates antibacterial action of colistin against multidrug-resistant acinetobacter baumannii.\",\"authors\":\"Adéla Diepoltová, Daria Elzbieta Nawrot, Ondřej Janďourek, Martin Juhás, Pavel Bárta, Pavlína Vávrová, Vinod Sukanth Kumar Pallabothula, Paulína Dudášová-Hatoková, Marcela Vejsová, Barbora Voxová, Jan Österreicher, Petra Štěrbová-Kovaříková, Petr Nachtigal, Jan Zitko, Klára Konečná\",\"doi\":\"10.1007/s00430-025-00854-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This comprehensive study provides insight into the antibacterial action of a recently published 2-chloro-N-(oxazol-2-yl)isonicotinamide (AB15), intending to assess its potential as a candidate adjuvant molecule to support existing antibacterial drugs. Within the determination of the antibacterial effect, a promising activity against a member of the ESKAPE group with reduced treatment options, biofilm producer, Acinetobacter baumannii, was recognized (MIC of AB15 ranged from 15.63 to 62.5 µM). In addition, AB15 exhibited bactericidal activity and non/low-toxicity in vitro (IC<sub>50</sub> > 1000 µM using HK-2 cells) and in vivo (LD<sub>50</sub> > 500 mg/kg of body weight of the Galleria mellonella larvae, for both intra-hemocoel and per oral administration routes). Checkerboard assay revealed additive and synergistic interactions of AB15 and last-resort antibiotic drug, colistin (CST). Moreover, attention was also given to a frequently overlooked antibiofilm activity - the ability to suppress bacterial dissemination from microbial biofilms, and parameter MBDC (minimum biofilm dissemination concentration) was introduced. The study of the antibiofilm activity of AB15 and CST, both acting individually, or in AB15 + CST combination, revealed that AB15 has significant potential to suppress bacterial dissemination from biofilm formed by a clinical isolate Acinetobacter baumannii and that it contributes to this effect when combined with CST. Finally, AB15 + CST combination demonstrated significantly greater biocompatibility towards human erythrocytes than CST acting individually at an equivalent antibiofilm-effective concentration. The role of AB15 as a promising adjuvant molecule to CST is also supported by its distinct mechanism of action, which reduces the risk of antimicrobial resistance emergence. To conclude, AB15 exhibits several essential attributes that support its designation as a promising antibiotic adjuvant.</p>\",\"PeriodicalId\":18369,\"journal\":{\"name\":\"Medical Microbiology and Immunology\",\"volume\":\"214 1\",\"pages\":\"44\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00430-025-00854-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-025-00854-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A new bactericidal chlorinated derivative containing 2-aminooxazole potentiates antibacterial action of colistin against multidrug-resistant acinetobacter baumannii.
This comprehensive study provides insight into the antibacterial action of a recently published 2-chloro-N-(oxazol-2-yl)isonicotinamide (AB15), intending to assess its potential as a candidate adjuvant molecule to support existing antibacterial drugs. Within the determination of the antibacterial effect, a promising activity against a member of the ESKAPE group with reduced treatment options, biofilm producer, Acinetobacter baumannii, was recognized (MIC of AB15 ranged from 15.63 to 62.5 µM). In addition, AB15 exhibited bactericidal activity and non/low-toxicity in vitro (IC50 > 1000 µM using HK-2 cells) and in vivo (LD50 > 500 mg/kg of body weight of the Galleria mellonella larvae, for both intra-hemocoel and per oral administration routes). Checkerboard assay revealed additive and synergistic interactions of AB15 and last-resort antibiotic drug, colistin (CST). Moreover, attention was also given to a frequently overlooked antibiofilm activity - the ability to suppress bacterial dissemination from microbial biofilms, and parameter MBDC (minimum biofilm dissemination concentration) was introduced. The study of the antibiofilm activity of AB15 and CST, both acting individually, or in AB15 + CST combination, revealed that AB15 has significant potential to suppress bacterial dissemination from biofilm formed by a clinical isolate Acinetobacter baumannii and that it contributes to this effect when combined with CST. Finally, AB15 + CST combination demonstrated significantly greater biocompatibility towards human erythrocytes than CST acting individually at an equivalent antibiofilm-effective concentration. The role of AB15 as a promising adjuvant molecule to CST is also supported by its distinct mechanism of action, which reduces the risk of antimicrobial resistance emergence. To conclude, AB15 exhibits several essential attributes that support its designation as a promising antibiotic adjuvant.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.