Jinok Oh, Jeong Hyeon Hwang, Yebin Han, Gaeun Lim, Sang Ho Lee, Jae-Seok Kim, Shashi Kant Bhatia, Yung-Hun Yang
{"title":"添加好氧制备的三酰甘油脂肪酶促进生物塑料的厌氧生物降解和生物甲烷生产。","authors":"Jinok Oh, Jeong Hyeon Hwang, Yebin Han, Gaeun Lim, Sang Ho Lee, Jae-Seok Kim, Shashi Kant Bhatia, Yung-Hun Yang","doi":"10.4014/jmb.2504.04047","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to overcome the limited biodegradability of bioplastics under anaerobic conditions. With polycaprolactone (PCL) as a model system, the effect of a bioplastic-degrading enzyme, triacylglycerol lipase (TGL), on its degradation and biomethane production was investigated. As the PCL film did not show evidence of any degradation over 14 days under anaerobic conditions in the sludge, TGL from <i>Bacillus</i> sp. JY35 was added to promote PCL breakdown into its monomeric form, which could be used for methane production. Application of 200 units/mg of TGL in the sludge led to a 33% increase in PCL degradation over 7 days, with sustained lipase activity despite the decreasing trend in effectiveness after 72 h. Across all type of samples, methane production in the TGL-supplemented sludge increased 1.8-fold across sludge types and up to 2.2-fold when bioplastics other than PCL underwent degradation, compared with that in the untreated sludge. Our result showed the addition of concentrated enzyme could effectively improve bioplastics biodegradability concomitant with methane production under anaerobic conditions, thus offering a feasible approach for optimizing anaerobic degradation with various bioplastics such as Polybuthylene succinate (PBS), and Polybutylene adipate-co-terephthalate (PBAT) although it will take longer time than PCL.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2504047"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463561/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Anaerobic Biodegradation and Biomethane Production from Bioplastics by the Addition of Aerobically Prepared Triacylglycerol Lipase.\",\"authors\":\"Jinok Oh, Jeong Hyeon Hwang, Yebin Han, Gaeun Lim, Sang Ho Lee, Jae-Seok Kim, Shashi Kant Bhatia, Yung-Hun Yang\",\"doi\":\"10.4014/jmb.2504.04047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to overcome the limited biodegradability of bioplastics under anaerobic conditions. With polycaprolactone (PCL) as a model system, the effect of a bioplastic-degrading enzyme, triacylglycerol lipase (TGL), on its degradation and biomethane production was investigated. As the PCL film did not show evidence of any degradation over 14 days under anaerobic conditions in the sludge, TGL from <i>Bacillus</i> sp. JY35 was added to promote PCL breakdown into its monomeric form, which could be used for methane production. Application of 200 units/mg of TGL in the sludge led to a 33% increase in PCL degradation over 7 days, with sustained lipase activity despite the decreasing trend in effectiveness after 72 h. Across all type of samples, methane production in the TGL-supplemented sludge increased 1.8-fold across sludge types and up to 2.2-fold when bioplastics other than PCL underwent degradation, compared with that in the untreated sludge. Our result showed the addition of concentrated enzyme could effectively improve bioplastics biodegradability concomitant with methane production under anaerobic conditions, thus offering a feasible approach for optimizing anaerobic degradation with various bioplastics such as Polybuthylene succinate (PBS), and Polybutylene adipate-co-terephthalate (PBAT) although it will take longer time than PCL.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"35 \",\"pages\":\"e2504047\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463561/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2504.04047\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2504.04047","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhanced Anaerobic Biodegradation and Biomethane Production from Bioplastics by the Addition of Aerobically Prepared Triacylglycerol Lipase.
This study aimed to overcome the limited biodegradability of bioplastics under anaerobic conditions. With polycaprolactone (PCL) as a model system, the effect of a bioplastic-degrading enzyme, triacylglycerol lipase (TGL), on its degradation and biomethane production was investigated. As the PCL film did not show evidence of any degradation over 14 days under anaerobic conditions in the sludge, TGL from Bacillus sp. JY35 was added to promote PCL breakdown into its monomeric form, which could be used for methane production. Application of 200 units/mg of TGL in the sludge led to a 33% increase in PCL degradation over 7 days, with sustained lipase activity despite the decreasing trend in effectiveness after 72 h. Across all type of samples, methane production in the TGL-supplemented sludge increased 1.8-fold across sludge types and up to 2.2-fold when bioplastics other than PCL underwent degradation, compared with that in the untreated sludge. Our result showed the addition of concentrated enzyme could effectively improve bioplastics biodegradability concomitant with methane production under anaerobic conditions, thus offering a feasible approach for optimizing anaerobic degradation with various bioplastics such as Polybuthylene succinate (PBS), and Polybutylene adipate-co-terephthalate (PBAT) although it will take longer time than PCL.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.