黑磷锶光热疗法促进感染创面愈合。

IF 2.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Gyeonghwi Yu, Sen Zhang, Jingyi Chen, Guixue Lian, Junhao Zhong, Yongzhe Liu, Xin Xu
{"title":"黑磷锶光热疗法促进感染创面愈合。","authors":"Gyeonghwi Yu, Sen Zhang, Jingyi Chen, Guixue Lian, Junhao Zhong, Yongzhe Liu, Xin Xu","doi":"10.1177/08853282251376879","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial infection, as one of the most common inflammatory complications of skin wounds, presents a critical challenge in clinical treatment: how to effectively control infection while preventing the emergence of drug-resistant strains. In this study, black phosphorus (BP) nanosheets were prepared using the liquid-phase exfoliation method. Strontium ions (Sr<sup>2+</sup>) were then loaded onto the BP surface via electrostatic self-assembly technology, forming a composite nanomaterial named Black Phosphorus Strontium (BP-Sr) that exhibits both antibacterial properties and the ability to promote soft tissue growth. Utilizing photothermal therapy (PTT), BP-Sr effectively kills bacteria, reduces inflammatory responses, and promotes soft tissue regeneration. This research provides a novel approach for anti-infection treatment and pro-healing strategies for infected wounds.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251376879"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promotion of infected wound healing by black phosphorus-strontium via photothermal therapy.\",\"authors\":\"Gyeonghwi Yu, Sen Zhang, Jingyi Chen, Guixue Lian, Junhao Zhong, Yongzhe Liu, Xin Xu\",\"doi\":\"10.1177/08853282251376879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial infection, as one of the most common inflammatory complications of skin wounds, presents a critical challenge in clinical treatment: how to effectively control infection while preventing the emergence of drug-resistant strains. In this study, black phosphorus (BP) nanosheets were prepared using the liquid-phase exfoliation method. Strontium ions (Sr<sup>2+</sup>) were then loaded onto the BP surface via electrostatic self-assembly technology, forming a composite nanomaterial named Black Phosphorus Strontium (BP-Sr) that exhibits both antibacterial properties and the ability to promote soft tissue growth. Utilizing photothermal therapy (PTT), BP-Sr effectively kills bacteria, reduces inflammatory responses, and promotes soft tissue regeneration. This research provides a novel approach for anti-infection treatment and pro-healing strategies for infected wounds.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251376879\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251376879\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251376879","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

细菌感染是皮肤创面最常见的炎症性并发症之一,如何在有效控制感染的同时防止耐药菌株的出现,是临床治疗面临的关键挑战。本研究采用液相剥离法制备了黑磷纳米片。然后通过静电自组装技术将锶离子(Sr2+)加载到BP表面,形成名为黑磷锶(BP- sr)的复合纳米材料,该材料既具有抗菌性能,又具有促进软组织生长的能力。利用光热疗法(PTT), BP-Sr有效地杀死细菌,减少炎症反应,促进软组织再生。本研究为感染伤口的抗感染治疗和促愈合策略提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promotion of infected wound healing by black phosphorus-strontium via photothermal therapy.

Bacterial infection, as one of the most common inflammatory complications of skin wounds, presents a critical challenge in clinical treatment: how to effectively control infection while preventing the emergence of drug-resistant strains. In this study, black phosphorus (BP) nanosheets were prepared using the liquid-phase exfoliation method. Strontium ions (Sr2+) were then loaded onto the BP surface via electrostatic self-assembly technology, forming a composite nanomaterial named Black Phosphorus Strontium (BP-Sr) that exhibits both antibacterial properties and the ability to promote soft tissue growth. Utilizing photothermal therapy (PTT), BP-Sr effectively kills bacteria, reduces inflammatory responses, and promotes soft tissue regeneration. This research provides a novel approach for anti-infection treatment and pro-healing strategies for infected wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信