{"title":"考虑低稀释率的乳品废水半连续微藻培养:关于培养稳定性和污染物去除的见解。","authors":"Gina Fiorella Vezzosi Zoto, Natalia Agustina Sacks, Melina Abril Urbani, Luz Marina Zapata","doi":"10.1080/15226514.2025.2560534","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial wastewater pollution is an environmental problem that affects ecosystems and communities. Phycoremediation offers an eco-friendly alternative for contaminant removal. This study evaluated the efficiency of <i>Tetradesmus obliquus</i> (To), <i>Chlorella sorokiniana</i> (Cs), and <i>Chlorella vulgaris</i> (Cv) in treating dairy wastewater. Microalgae were cultivated in photobioreactors at four dilution rates (0.20, 0.25, 0.30, and 0.35d<sup>-1</sup>). The initial wastewater contained pH 7.79 ± 0.50, total nitrogen (TN) 188 ± 0.50 mg L<sup>-1</sup>, total phosphorus (TP) 20.45 ± 0.17 mg L<sup>-1</sup>, chemical oxygen demand (COD) 8400 ± 52mgO<sub>2</sub>L<sup>-1</sup>, Mn 2.02mgL<sup>-1</sup>, Al 217.43mgL<sup>-1</sup>, Cr 0.04μgL<sup>-1</sup>, total coliforms (TC) 3800CFUmL<sup>-1</sup>, and <i>Escherichia coli</i> (EC) 100CFUmL<sup>-1</sup>. All microalgae showed high removal efficiency, with 0.20d<sup>-1</sup> as the optimal rate. After treatment, To0.20 reduce TN 97.3 ± 0.71mgL<sup>-1</sup>, TP 2.39 ± 0.16mgL<sup>-1</sup>, COD 570 ± 2mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al 0.07 ± 0.00mgL<sup>-1</sup>, Cr 0.02 ± 0.00µgL<sup>-1</sup>, TC and EC not detected. Cs0.2, it was TN 4.94 ± 0.35mgL<sup>-1</sup>, TP 6.59 ± 0.23mgL<sup>-1</sup>, COD 432 ± 13mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al 0.03 ± 0.01mgL<sup>-1</sup>, TC 4 ± 0CFU mL<sup>-1</sup>, Cr and EC not detected and Cv0.2, it was TN 5.15 ± 0.89mgL<sup>-1</sup>, TP 5.77 ± 0.05mgL<sup>-1</sup>, COD 450 ± 14mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al, Cr, TC and EC not detected. The best treatment was Cv0.20, which eliminated 99% TN, 72% TP, 95% COD, and 100% TC and EC. This study provides new insights into using different microalgae and dilution rates to produce remediated effluent meeting irrigation standards.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-12"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-continuous microalgae cultivation on dairy wastewater considering low dilution rates: insights about cultivation stability and contaminant removal.\",\"authors\":\"Gina Fiorella Vezzosi Zoto, Natalia Agustina Sacks, Melina Abril Urbani, Luz Marina Zapata\",\"doi\":\"10.1080/15226514.2025.2560534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industrial wastewater pollution is an environmental problem that affects ecosystems and communities. Phycoremediation offers an eco-friendly alternative for contaminant removal. This study evaluated the efficiency of <i>Tetradesmus obliquus</i> (To), <i>Chlorella sorokiniana</i> (Cs), and <i>Chlorella vulgaris</i> (Cv) in treating dairy wastewater. Microalgae were cultivated in photobioreactors at four dilution rates (0.20, 0.25, 0.30, and 0.35d<sup>-1</sup>). The initial wastewater contained pH 7.79 ± 0.50, total nitrogen (TN) 188 ± 0.50 mg L<sup>-1</sup>, total phosphorus (TP) 20.45 ± 0.17 mg L<sup>-1</sup>, chemical oxygen demand (COD) 8400 ± 52mgO<sub>2</sub>L<sup>-1</sup>, Mn 2.02mgL<sup>-1</sup>, Al 217.43mgL<sup>-1</sup>, Cr 0.04μgL<sup>-1</sup>, total coliforms (TC) 3800CFUmL<sup>-1</sup>, and <i>Escherichia coli</i> (EC) 100CFUmL<sup>-1</sup>. All microalgae showed high removal efficiency, with 0.20d<sup>-1</sup> as the optimal rate. After treatment, To0.20 reduce TN 97.3 ± 0.71mgL<sup>-1</sup>, TP 2.39 ± 0.16mgL<sup>-1</sup>, COD 570 ± 2mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al 0.07 ± 0.00mgL<sup>-1</sup>, Cr 0.02 ± 0.00µgL<sup>-1</sup>, TC and EC not detected. Cs0.2, it was TN 4.94 ± 0.35mgL<sup>-1</sup>, TP 6.59 ± 0.23mgL<sup>-1</sup>, COD 432 ± 13mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al 0.03 ± 0.01mgL<sup>-1</sup>, TC 4 ± 0CFU mL<sup>-1</sup>, Cr and EC not detected and Cv0.2, it was TN 5.15 ± 0.89mgL<sup>-1</sup>, TP 5.77 ± 0.05mgL<sup>-1</sup>, COD 450 ± 14mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al, Cr, TC and EC not detected. The best treatment was Cv0.20, which eliminated 99% TN, 72% TP, 95% COD, and 100% TC and EC. This study provides new insights into using different microalgae and dilution rates to produce remediated effluent meeting irrigation standards.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2560534\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2560534","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Semi-continuous microalgae cultivation on dairy wastewater considering low dilution rates: insights about cultivation stability and contaminant removal.
Industrial wastewater pollution is an environmental problem that affects ecosystems and communities. Phycoremediation offers an eco-friendly alternative for contaminant removal. This study evaluated the efficiency of Tetradesmus obliquus (To), Chlorella sorokiniana (Cs), and Chlorella vulgaris (Cv) in treating dairy wastewater. Microalgae were cultivated in photobioreactors at four dilution rates (0.20, 0.25, 0.30, and 0.35d-1). The initial wastewater contained pH 7.79 ± 0.50, total nitrogen (TN) 188 ± 0.50 mg L-1, total phosphorus (TP) 20.45 ± 0.17 mg L-1, chemical oxygen demand (COD) 8400 ± 52mgO2L-1, Mn 2.02mgL-1, Al 217.43mgL-1, Cr 0.04μgL-1, total coliforms (TC) 3800CFUmL-1, and Escherichia coli (EC) 100CFUmL-1. All microalgae showed high removal efficiency, with 0.20d-1 as the optimal rate. After treatment, To0.20 reduce TN 97.3 ± 0.71mgL-1, TP 2.39 ± 0.16mgL-1, COD 570 ± 2mgO2L-1, Mn 0.06 ± 0.00mgL-1, Al 0.07 ± 0.00mgL-1, Cr 0.02 ± 0.00µgL-1, TC and EC not detected. Cs0.2, it was TN 4.94 ± 0.35mgL-1, TP 6.59 ± 0.23mgL-1, COD 432 ± 13mgO2L-1, Mn 0.06 ± 0.00mgL-1, Al 0.03 ± 0.01mgL-1, TC 4 ± 0CFU mL-1, Cr and EC not detected and Cv0.2, it was TN 5.15 ± 0.89mgL-1, TP 5.77 ± 0.05mgL-1, COD 450 ± 14mgO2L-1, Mn 0.06 ± 0.00mgL-1, Al, Cr, TC and EC not detected. The best treatment was Cv0.20, which eliminated 99% TN, 72% TP, 95% COD, and 100% TC and EC. This study provides new insights into using different microalgae and dilution rates to produce remediated effluent meeting irrigation standards.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.