{"title":"Oroidins:具有新兴治疗潜力的海洋吡咯-咪唑类生物碱。","authors":"Navin Kumar Tailor, Geeta Deswal, Ajmer Singh Grewal, Kumar Guarve","doi":"10.2174/0115680266391437250909024350","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction/objective: </strong>Oroidins are marine-derived alkaloids known for their structural complexity and a broad range of pharmacological activities. This review aims to explore their emerging role as promising scaffolds in medicinal chemistry, particularly focusing on their unique chemical structure, diverse biological effects, and recent synthetic advancements.</p><p><strong>Methods: </strong>An extensive literature review was conducted to analyze peer-reviewed articles on the isolation, synthesis, structural characterization, and pharmacological evaluation of oroidins and their derivatives. The review highlights significant developments in synthetic strategies, including the incorporation of pyrrole carboxamide units, isotopic labeling approaches, and palladiumcatalyzed reactions.</p><p><strong>Results: </strong>Oroidins exhibit a wide spectrum of biological activities, including antibacterial, antiviral, antimalarial, antiprotozoal, anticancer, anti-inflammatory, neurotropic, and antimuscarinic properties. Their characteristic pyrrole-imidazole core, containing a glycocyamidine moiety and azepinone ring, has been instrumental in targeting key biological pathways such as kinases, NF-κB, and the Raf/MEK-1/MAPK cascade. Structural modifications have led to enhanced potency and specificity of oroidin-based compounds.</p><p><strong>Discussion: </strong>The findings emphasize the potential of oroidins as lead compounds in drug development. Their structural diversity, bioactivity profile, and ability to inhibit critical cellular targets position them as attractive templates for therapeutic design. However, further research is needed to optimize their pharmacokinetic properties and evaluate their clinical relevance.</p><p><strong>Conclusion: </strong>Oroidins represent a valuable class of marine alkaloids with significant therapeutic promise. Advances in synthetic methodologies have expanded their applicability in drug discovery, supporting continued exploration of these compounds for the development of novel therapeutic agents.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oroidins: Marine Pyrrole-Imidazole Alkaloids with Emerging Therapeutic Potential.\",\"authors\":\"Navin Kumar Tailor, Geeta Deswal, Ajmer Singh Grewal, Kumar Guarve\",\"doi\":\"10.2174/0115680266391437250909024350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction/objective: </strong>Oroidins are marine-derived alkaloids known for their structural complexity and a broad range of pharmacological activities. This review aims to explore their emerging role as promising scaffolds in medicinal chemistry, particularly focusing on their unique chemical structure, diverse biological effects, and recent synthetic advancements.</p><p><strong>Methods: </strong>An extensive literature review was conducted to analyze peer-reviewed articles on the isolation, synthesis, structural characterization, and pharmacological evaluation of oroidins and their derivatives. The review highlights significant developments in synthetic strategies, including the incorporation of pyrrole carboxamide units, isotopic labeling approaches, and palladiumcatalyzed reactions.</p><p><strong>Results: </strong>Oroidins exhibit a wide spectrum of biological activities, including antibacterial, antiviral, antimalarial, antiprotozoal, anticancer, anti-inflammatory, neurotropic, and antimuscarinic properties. Their characteristic pyrrole-imidazole core, containing a glycocyamidine moiety and azepinone ring, has been instrumental in targeting key biological pathways such as kinases, NF-κB, and the Raf/MEK-1/MAPK cascade. Structural modifications have led to enhanced potency and specificity of oroidin-based compounds.</p><p><strong>Discussion: </strong>The findings emphasize the potential of oroidins as lead compounds in drug development. Their structural diversity, bioactivity profile, and ability to inhibit critical cellular targets position them as attractive templates for therapeutic design. However, further research is needed to optimize their pharmacokinetic properties and evaluate their clinical relevance.</p><p><strong>Conclusion: </strong>Oroidins represent a valuable class of marine alkaloids with significant therapeutic promise. Advances in synthetic methodologies have expanded their applicability in drug discovery, supporting continued exploration of these compounds for the development of novel therapeutic agents.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266391437250909024350\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266391437250909024350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Oroidins: Marine Pyrrole-Imidazole Alkaloids with Emerging Therapeutic Potential.
Introduction/objective: Oroidins are marine-derived alkaloids known for their structural complexity and a broad range of pharmacological activities. This review aims to explore their emerging role as promising scaffolds in medicinal chemistry, particularly focusing on their unique chemical structure, diverse biological effects, and recent synthetic advancements.
Methods: An extensive literature review was conducted to analyze peer-reviewed articles on the isolation, synthesis, structural characterization, and pharmacological evaluation of oroidins and their derivatives. The review highlights significant developments in synthetic strategies, including the incorporation of pyrrole carboxamide units, isotopic labeling approaches, and palladiumcatalyzed reactions.
Results: Oroidins exhibit a wide spectrum of biological activities, including antibacterial, antiviral, antimalarial, antiprotozoal, anticancer, anti-inflammatory, neurotropic, and antimuscarinic properties. Their characteristic pyrrole-imidazole core, containing a glycocyamidine moiety and azepinone ring, has been instrumental in targeting key biological pathways such as kinases, NF-κB, and the Raf/MEK-1/MAPK cascade. Structural modifications have led to enhanced potency and specificity of oroidin-based compounds.
Discussion: The findings emphasize the potential of oroidins as lead compounds in drug development. Their structural diversity, bioactivity profile, and ability to inhibit critical cellular targets position them as attractive templates for therapeutic design. However, further research is needed to optimize their pharmacokinetic properties and evaluate their clinical relevance.
Conclusion: Oroidins represent a valuable class of marine alkaloids with significant therapeutic promise. Advances in synthetic methodologies have expanded their applicability in drug discovery, supporting continued exploration of these compounds for the development of novel therapeutic agents.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.