Maria Gabriela Packaeser, Fernanda Cocco, Lucas Saldanha da Rosa, João Paulo Mendes Tribst, Cornelis Johannes Kleverlaan, Luiz Felipe Valandro, Gabriel Kalil Rocha Pereira, Pablo Machado Soares
{"title":"氧化锆基台螺旋通道树脂复合填充厚度对水泥固载二硅酸锂材料疲劳性能的影响","authors":"Maria Gabriela Packaeser, Fernanda Cocco, Lucas Saldanha da Rosa, João Paulo Mendes Tribst, Cornelis Johannes Kleverlaan, Luiz Felipe Valandro, Gabriel Kalil Rocha Pereira, Pablo Machado Soares","doi":"10.1002/jbm.b.35657","DOIUrl":null,"url":null,"abstract":"<p>This study evaluates the effect of varying resin composite thicknesses for sealing the screw-access hole of zirconia abutments on the fatigue mechanical behavior of a lithium disilicate cement-retained material. One hundred lithium disilicate discs (<i>Ø</i> = 10 mm, 1 mm thickness; IPS e.max CAD, Ivoclar AG) were prepared, alongside zirconia abutments (<i>Ø</i> = 10 mm, 3 mm thickness, 2.5 mm of screw-access hole diameter; IPS e.max ZirCAD MO, Ivoclar AG). The specimens were randomly assigned to five groups based on the thickness of sealing resin composite (Tetric N-Ceram Bulk fill, Ivoclar AG): Ctrl (only PTFE tape); PTFE tape +0.5 mm composite; PTFE tape +1.0 mm composite; PTFE tape +1.5 mm composite; and PTFE tape +2.0 mm composite. Surface treatments were conducted on ceramics before luting with dual-cure resin cement (Multilink N, Ivoclar AG). Monotonic testing was conducted at a loading rate of 1.0 mm/min until crack detection (<i>n</i> = 5). Cyclic fatigue testing was performed (<i>n</i> = 15; 100 N for 5000 cycles, followed by increments of 100 N every 10,000 cycles at 20 Hz) until failure. Finite element and Scanning Electron Microscopy analyses were also performed. One-way ANOVA and Tukey post hoc tests were used for monotonic data, while Kaplan–Meier and Mantel-Cox tests assessed survival rates (<i>α</i> = 0.05) based on fatigue test. No significant differences in monotonic tests were found. However, the 1.5 mm and 2.0 mm groups exhibited significantly higher fatigue failure loads compared to the Ctrl, 0.5 mm, and 1.0 mm groups (0.5 mm: 1093 N = Ctrl: 1120 N = 1.0 mm: 1127 N < 1.5 mm: 1426 N = 2.0 mm: 1307 N, <i>p</i> ≤ 0.05). To improve the fatigue behavior of lithium disilicate restorations bonded to zirconia abutments, more than half of the screw-access hole (greater than 1.5 mm) should be filled with resin composite.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35657","citationCount":"0","resultStr":"{\"title\":\"Effect of Resin Composite Filling Thickness in Zirconia Abutment Screw-Access on the Fatigue Behavior of a Cement-Retained Lithium Disilicate Material\",\"authors\":\"Maria Gabriela Packaeser, Fernanda Cocco, Lucas Saldanha da Rosa, João Paulo Mendes Tribst, Cornelis Johannes Kleverlaan, Luiz Felipe Valandro, Gabriel Kalil Rocha Pereira, Pablo Machado Soares\",\"doi\":\"10.1002/jbm.b.35657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study evaluates the effect of varying resin composite thicknesses for sealing the screw-access hole of zirconia abutments on the fatigue mechanical behavior of a lithium disilicate cement-retained material. One hundred lithium disilicate discs (<i>Ø</i> = 10 mm, 1 mm thickness; IPS e.max CAD, Ivoclar AG) were prepared, alongside zirconia abutments (<i>Ø</i> = 10 mm, 3 mm thickness, 2.5 mm of screw-access hole diameter; IPS e.max ZirCAD MO, Ivoclar AG). The specimens were randomly assigned to five groups based on the thickness of sealing resin composite (Tetric N-Ceram Bulk fill, Ivoclar AG): Ctrl (only PTFE tape); PTFE tape +0.5 mm composite; PTFE tape +1.0 mm composite; PTFE tape +1.5 mm composite; and PTFE tape +2.0 mm composite. Surface treatments were conducted on ceramics before luting with dual-cure resin cement (Multilink N, Ivoclar AG). Monotonic testing was conducted at a loading rate of 1.0 mm/min until crack detection (<i>n</i> = 5). Cyclic fatigue testing was performed (<i>n</i> = 15; 100 N for 5000 cycles, followed by increments of 100 N every 10,000 cycles at 20 Hz) until failure. Finite element and Scanning Electron Microscopy analyses were also performed. One-way ANOVA and Tukey post hoc tests were used for monotonic data, while Kaplan–Meier and Mantel-Cox tests assessed survival rates (<i>α</i> = 0.05) based on fatigue test. No significant differences in monotonic tests were found. However, the 1.5 mm and 2.0 mm groups exhibited significantly higher fatigue failure loads compared to the Ctrl, 0.5 mm, and 1.0 mm groups (0.5 mm: 1093 N = Ctrl: 1120 N = 1.0 mm: 1127 N < 1.5 mm: 1426 N = 2.0 mm: 1307 N, <i>p</i> ≤ 0.05). To improve the fatigue behavior of lithium disilicate restorations bonded to zirconia abutments, more than half of the screw-access hole (greater than 1.5 mm) should be filled with resin composite.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35657\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35657\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35657","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effect of Resin Composite Filling Thickness in Zirconia Abutment Screw-Access on the Fatigue Behavior of a Cement-Retained Lithium Disilicate Material
This study evaluates the effect of varying resin composite thicknesses for sealing the screw-access hole of zirconia abutments on the fatigue mechanical behavior of a lithium disilicate cement-retained material. One hundred lithium disilicate discs (Ø = 10 mm, 1 mm thickness; IPS e.max CAD, Ivoclar AG) were prepared, alongside zirconia abutments (Ø = 10 mm, 3 mm thickness, 2.5 mm of screw-access hole diameter; IPS e.max ZirCAD MO, Ivoclar AG). The specimens were randomly assigned to five groups based on the thickness of sealing resin composite (Tetric N-Ceram Bulk fill, Ivoclar AG): Ctrl (only PTFE tape); PTFE tape +0.5 mm composite; PTFE tape +1.0 mm composite; PTFE tape +1.5 mm composite; and PTFE tape +2.0 mm composite. Surface treatments were conducted on ceramics before luting with dual-cure resin cement (Multilink N, Ivoclar AG). Monotonic testing was conducted at a loading rate of 1.0 mm/min until crack detection (n = 5). Cyclic fatigue testing was performed (n = 15; 100 N for 5000 cycles, followed by increments of 100 N every 10,000 cycles at 20 Hz) until failure. Finite element and Scanning Electron Microscopy analyses were also performed. One-way ANOVA and Tukey post hoc tests were used for monotonic data, while Kaplan–Meier and Mantel-Cox tests assessed survival rates (α = 0.05) based on fatigue test. No significant differences in monotonic tests were found. However, the 1.5 mm and 2.0 mm groups exhibited significantly higher fatigue failure loads compared to the Ctrl, 0.5 mm, and 1.0 mm groups (0.5 mm: 1093 N = Ctrl: 1120 N = 1.0 mm: 1127 N < 1.5 mm: 1426 N = 2.0 mm: 1307 N, p ≤ 0.05). To improve the fatigue behavior of lithium disilicate restorations bonded to zirconia abutments, more than half of the screw-access hole (greater than 1.5 mm) should be filled with resin composite.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.