Chen-Chen Xie, Ting Wang, Xin-Ran Liu, Yan Wang, Qin Dang, Tian Ding, Jia-Qi Xu, Xian-Jun Yu, Hai Lin, Xiao-Wu Xu, Yi Qin
{"title":"液-液相分离是癌症的主要特征。","authors":"Chen-Chen Xie, Ting Wang, Xin-Ran Liu, Yan Wang, Qin Dang, Tian Ding, Jia-Qi Xu, Xian-Jun Yu, Hai Lin, Xiao-Wu Xu, Yi Qin","doi":"10.1111/cpr.70122","DOIUrl":null,"url":null,"abstract":"<p><p>The malignant transformation of cancer cells is underpinned by the dysregulation of essential cellular processes, including genome stability maintenance, DNA repair, transcriptional control and signal transduction. These processes are not randomly distributed but are spatiotemporally coordinated through dynamic molecular assemblies. Recent advances have highlighted the pivotal role of biomolecular condensates, membraneless compartments formed via liquid-liquid phase separation (LLPS), in compartmentalising and regulating these key functions. LLPS enables the concentration and organisation of proteins and nucleic acids, creating distinct biochemical environments that facilitate cellular decision-making. Importantly, aberrant phase separation has been increasingly implicated in the acquisition of cancer hallmarks, such as sustained proliferative signalling, resistance to cell death and immune evasion. In this review, we summarise the physicochemical principles of LLPS, examine its emerging roles in oncogenic transformation and discuss the therapeutic potential of targeting phase separation in cancer. Our findings highlight LLPS as a novel and versatile regulatory layer in tumour biology and an emerging frontier in precision oncology.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70122"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-Liquid Phase Separation in Major Hallmarks of Cancer.\",\"authors\":\"Chen-Chen Xie, Ting Wang, Xin-Ran Liu, Yan Wang, Qin Dang, Tian Ding, Jia-Qi Xu, Xian-Jun Yu, Hai Lin, Xiao-Wu Xu, Yi Qin\",\"doi\":\"10.1111/cpr.70122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The malignant transformation of cancer cells is underpinned by the dysregulation of essential cellular processes, including genome stability maintenance, DNA repair, transcriptional control and signal transduction. These processes are not randomly distributed but are spatiotemporally coordinated through dynamic molecular assemblies. Recent advances have highlighted the pivotal role of biomolecular condensates, membraneless compartments formed via liquid-liquid phase separation (LLPS), in compartmentalising and regulating these key functions. LLPS enables the concentration and organisation of proteins and nucleic acids, creating distinct biochemical environments that facilitate cellular decision-making. Importantly, aberrant phase separation has been increasingly implicated in the acquisition of cancer hallmarks, such as sustained proliferative signalling, resistance to cell death and immune evasion. In this review, we summarise the physicochemical principles of LLPS, examine its emerging roles in oncogenic transformation and discuss the therapeutic potential of targeting phase separation in cancer. Our findings highlight LLPS as a novel and versatile regulatory layer in tumour biology and an emerging frontier in precision oncology.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70122\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70122\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70122","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Liquid-Liquid Phase Separation in Major Hallmarks of Cancer.
The malignant transformation of cancer cells is underpinned by the dysregulation of essential cellular processes, including genome stability maintenance, DNA repair, transcriptional control and signal transduction. These processes are not randomly distributed but are spatiotemporally coordinated through dynamic molecular assemblies. Recent advances have highlighted the pivotal role of biomolecular condensates, membraneless compartments formed via liquid-liquid phase separation (LLPS), in compartmentalising and regulating these key functions. LLPS enables the concentration and organisation of proteins and nucleic acids, creating distinct biochemical environments that facilitate cellular decision-making. Importantly, aberrant phase separation has been increasingly implicated in the acquisition of cancer hallmarks, such as sustained proliferative signalling, resistance to cell death and immune evasion. In this review, we summarise the physicochemical principles of LLPS, examine its emerging roles in oncogenic transformation and discuss the therapeutic potential of targeting phase separation in cancer. Our findings highlight LLPS as a novel and versatile regulatory layer in tumour biology and an emerging frontier in precision oncology.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.