独立于心包细胞的吞噬血细胞调节蚊子背血管上的细胞免疫反应,包括感染引起的心率降低。

IF 2.9 3区 生物学 Q3 CELL BIOLOGY
Cole J Meier, Shabbir Ahmed, Tania Y Estévez-Lao, Julián F Hillyer
{"title":"独立于心包细胞的吞噬血细胞调节蚊子背血管上的细胞免疫反应,包括感染引起的心率降低。","authors":"Cole J Meier, Shabbir Ahmed, Tania Y Estévez-Lao, Julián F Hillyer","doi":"10.1007/s00441-025-04011-y","DOIUrl":null,"url":null,"abstract":"<p><p>Infection induces the aggregation of hemocytes on the dorsal vessel of mosquitoes. These hemocytes, called periostial hemocytes, phagocytose pathogens and produce immune factors on the abdominal portion of the dorsal vessel, called the heart. One of these immune factors, nitric oxide, is a pleiotropic free radical that is an antimicrobial and a heartbeat reducer. But nitric oxide is not just produced by hemocytes. It is also synthesized by pericardial cells that flank the heart, and other tissues. To determine whether it is the periostial hemocytes or the pericardial cells that modulate the heart following infection, we chemically ablated the hemocytes using clodronate liposomes and measured immune responses and heart physiology. We demonstrate that clodronate liposomes ablate the sessile hemocytes, including the periostial hemocytes, while leaving the pericardial cells and heart integrity unaffected. Moreover, ablating hemocytes abolishes the phagocytosis of bacteria, alters the deposition of melanized bacteria, and decreases nitric oxide synthase activity on the heart. Importantly, hemocyte ablation eliminates the infection induced reduction of the heart rate, mainly by modifying the anterograde heart rate. Therefore, periostial hemocytes drive immune responses on the heart and infection-induced changes to circulatory physiology.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phagocytic hemocytes, independent of pericardial cells, modulate cellular immune responses on the dorsal vessel of mosquitoes, including the infection-induced reduction of the heart rate.\",\"authors\":\"Cole J Meier, Shabbir Ahmed, Tania Y Estévez-Lao, Julián F Hillyer\",\"doi\":\"10.1007/s00441-025-04011-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infection induces the aggregation of hemocytes on the dorsal vessel of mosquitoes. These hemocytes, called periostial hemocytes, phagocytose pathogens and produce immune factors on the abdominal portion of the dorsal vessel, called the heart. One of these immune factors, nitric oxide, is a pleiotropic free radical that is an antimicrobial and a heartbeat reducer. But nitric oxide is not just produced by hemocytes. It is also synthesized by pericardial cells that flank the heart, and other tissues. To determine whether it is the periostial hemocytes or the pericardial cells that modulate the heart following infection, we chemically ablated the hemocytes using clodronate liposomes and measured immune responses and heart physiology. We demonstrate that clodronate liposomes ablate the sessile hemocytes, including the periostial hemocytes, while leaving the pericardial cells and heart integrity unaffected. Moreover, ablating hemocytes abolishes the phagocytosis of bacteria, alters the deposition of melanized bacteria, and decreases nitric oxide synthase activity on the heart. Importantly, hemocyte ablation eliminates the infection induced reduction of the heart rate, mainly by modifying the anterograde heart rate. Therefore, periostial hemocytes drive immune responses on the heart and infection-induced changes to circulatory physiology.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-025-04011-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-04011-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

感染引起蚊子背血管上血细胞聚集。这些血细胞,称为骨膜血细胞,吞噬病原体,并在背血管的腹部部分产生免疫因子,称为心脏。其中一种免疫因子,一氧化氮,是一种多效自由基,是一种抗菌剂和心跳减缓剂。但是一氧化氮不仅仅是由血细胞产生的。它也由心脏周围的心包细胞和其他组织合成。为了确定是骨膜血细胞还是心包细胞在感染后调节心脏,我们使用氯钠脂质体化学消融血细胞,并测量免疫反应和心脏生理学。我们证明氯膦酸脂质体可以消融无底血细胞,包括骨膜血细胞,同时不影响心包细胞和心脏完整性。此外,消融血细胞消除了细菌的吞噬作用,改变了黑化细菌的沉积,降低了心脏上一氧化氮合酶的活性。重要的是,血细胞消融消除了感染引起的心率降低,主要是通过改变顺行心率。因此,骨膜血细胞驱动心脏的免疫反应和感染引起的循环生理变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phagocytic hemocytes, independent of pericardial cells, modulate cellular immune responses on the dorsal vessel of mosquitoes, including the infection-induced reduction of the heart rate.

Infection induces the aggregation of hemocytes on the dorsal vessel of mosquitoes. These hemocytes, called periostial hemocytes, phagocytose pathogens and produce immune factors on the abdominal portion of the dorsal vessel, called the heart. One of these immune factors, nitric oxide, is a pleiotropic free radical that is an antimicrobial and a heartbeat reducer. But nitric oxide is not just produced by hemocytes. It is also synthesized by pericardial cells that flank the heart, and other tissues. To determine whether it is the periostial hemocytes or the pericardial cells that modulate the heart following infection, we chemically ablated the hemocytes using clodronate liposomes and measured immune responses and heart physiology. We demonstrate that clodronate liposomes ablate the sessile hemocytes, including the periostial hemocytes, while leaving the pericardial cells and heart integrity unaffected. Moreover, ablating hemocytes abolishes the phagocytosis of bacteria, alters the deposition of melanized bacteria, and decreases nitric oxide synthase activity on the heart. Importantly, hemocyte ablation eliminates the infection induced reduction of the heart rate, mainly by modifying the anterograde heart rate. Therefore, periostial hemocytes drive immune responses on the heart and infection-induced changes to circulatory physiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信