电场驱动缺陷迁移的氧化半导体局部p型和n型掺杂。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiali He, Ursula Ludacka, Kasper A Hunnestad, Didrik R Småbråten, Konstantin Shapovalov, Per Erik Vullum, Constantinos Hatzoglou, Donald M Evans, Erik D Roede, Zewu Yan, Edith Bourret, Sverre M Selbach, David Gao, Jaakko Akola, Dennis Meier
{"title":"电场驱动缺陷迁移的氧化半导体局部p型和n型掺杂。","authors":"Jiali He, Ursula Ludacka, Kasper A Hunnestad, Didrik R Småbråten, Konstantin Shapovalov, Per Erik Vullum, Constantinos Hatzoglou, Donald M Evans, Erik D Roede, Zewu Yan, Edith Bourret, Sverre M Selbach, David Gao, Jaakko Akola, Dennis Meier","doi":"10.1002/advs.202506629","DOIUrl":null,"url":null,"abstract":"<p><p>Layered oxides exhibit high ionic mobility and chemical flexibility, attracting interest as cathode materials for lithium-ion batteries and the pairing of hydrogen production and carbon capture. Recently, layered oxides emerged as highly tunable semiconductors. For example, by introducing anti-Frenkel defects, the electronic hopping conductance in hexagonal manganites is increased locally by orders of magnitude. Here, local acceptor and donor doping in Er(Mn,Ti)O<sub>3</sub> is demonstrated, facilitated by the controlled splitting of anti-Frenkel defects under applied d.c. voltage. By combining density functional theory calculations, scanning probe microscopy, atom probe tomography, and scanning transmission electron microscopy, it is shown that the oxygen defects can readily be moved through the layered crystal structure, leading to nano-sized interstitial-rich (p-type) and vacancy-rich (n-type) regions. The resulting pattern is comparable to dipolar npn-junctions and stable on the timescale of days. These findings reveal the possibility of temporarily functionalizing oxide semiconductors at the nanoscale, giving additional opportunities for the field of oxide electronics and the development of transient electronics in general.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e06629"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local p- and n-Type Doping of an Oxide Semiconductor via Electric-Field-Driven Defect Migration.\",\"authors\":\"Jiali He, Ursula Ludacka, Kasper A Hunnestad, Didrik R Småbråten, Konstantin Shapovalov, Per Erik Vullum, Constantinos Hatzoglou, Donald M Evans, Erik D Roede, Zewu Yan, Edith Bourret, Sverre M Selbach, David Gao, Jaakko Akola, Dennis Meier\",\"doi\":\"10.1002/advs.202506629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Layered oxides exhibit high ionic mobility and chemical flexibility, attracting interest as cathode materials for lithium-ion batteries and the pairing of hydrogen production and carbon capture. Recently, layered oxides emerged as highly tunable semiconductors. For example, by introducing anti-Frenkel defects, the electronic hopping conductance in hexagonal manganites is increased locally by orders of magnitude. Here, local acceptor and donor doping in Er(Mn,Ti)O<sub>3</sub> is demonstrated, facilitated by the controlled splitting of anti-Frenkel defects under applied d.c. voltage. By combining density functional theory calculations, scanning probe microscopy, atom probe tomography, and scanning transmission electron microscopy, it is shown that the oxygen defects can readily be moved through the layered crystal structure, leading to nano-sized interstitial-rich (p-type) and vacancy-rich (n-type) regions. The resulting pattern is comparable to dipolar npn-junctions and stable on the timescale of days. These findings reveal the possibility of temporarily functionalizing oxide semiconductors at the nanoscale, giving additional opportunities for the field of oxide electronics and the development of transient electronics in general.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e06629\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202506629\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202506629","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

层状氧化物表现出高离子迁移率和化学柔韧性,作为锂离子电池的正极材料以及制氢和碳捕获的结合引起了人们的兴趣。最近,层状氧化物成为高度可调谐的半导体。例如,通过引入反弗伦克尔缺陷,六方锰中的电子跳变电导局部增加了几个数量级。本研究证明了Er(Mn,Ti)O3中局部受体和供体掺杂,并通过施加直流电压控制反frenkel缺陷的分裂来促进。结合密度泛函理论计算、扫描探针显微镜、原子探针层析成像和扫描透射电子显微镜,表明氧缺陷可以很容易地穿过层状晶体结构,导致纳米级富间隙区(p型)和富空位区(n型)。所得到的模式与偶极npn结相当,并且在天的时间尺度上稳定。这些发现揭示了在纳米尺度上暂时功能化氧化物半导体的可能性,为氧化物电子学领域和瞬态电子学的发展提供了额外的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local p- and n-Type Doping of an Oxide Semiconductor via Electric-Field-Driven Defect Migration.

Layered oxides exhibit high ionic mobility and chemical flexibility, attracting interest as cathode materials for lithium-ion batteries and the pairing of hydrogen production and carbon capture. Recently, layered oxides emerged as highly tunable semiconductors. For example, by introducing anti-Frenkel defects, the electronic hopping conductance in hexagonal manganites is increased locally by orders of magnitude. Here, local acceptor and donor doping in Er(Mn,Ti)O3 is demonstrated, facilitated by the controlled splitting of anti-Frenkel defects under applied d.c. voltage. By combining density functional theory calculations, scanning probe microscopy, atom probe tomography, and scanning transmission electron microscopy, it is shown that the oxygen defects can readily be moved through the layered crystal structure, leading to nano-sized interstitial-rich (p-type) and vacancy-rich (n-type) regions. The resulting pattern is comparable to dipolar npn-junctions and stable on the timescale of days. These findings reveal the possibility of temporarily functionalizing oxide semiconductors at the nanoscale, giving additional opportunities for the field of oxide electronics and the development of transient electronics in general.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信