食源性乳酸菌抗氧化性能研究进展

IF 5.2 2区 生物学
Anna Łepecka, Danuta Kołożyn-Krajewska
{"title":"食源性乳酸菌抗氧化性能研究进展","authors":"Anna Łepecka,&nbsp;Danuta Kołożyn-Krajewska","doi":"10.1111/1751-7915.70229","DOIUrl":null,"url":null,"abstract":"<p>The mechanisms of antioxidant action of lactic acid bacteria (LAB) have not been fully explained. This review aimed to characterise the antioxidant properties that can be presented by LAB strains isolated from food. The review presents a definition and classification of the antioxidants, mechanisms of antioxidant action of LAB, discusses the most popular antioxidant assays, taking into account the mechanisms underlying each test and the practice of assessing antioxidant capacity, and presents examples of studies of food-derived LAB and fermented food with antioxidant properties. LAB are an important part of the human microbiota, and their role in antioxidant processes is extremely important. They can respond quickly and effectively to free radicals by enhancing antioxidant activity, chelating metal ions, producing antioxidant enzymes and other metabolites, and thus mitigating the damage caused by oxidative stress. This review also presents methods for testing antioxidant properties that can be used for LAB screening. The most commonly used methods are the classical methods of testing antioxidant activity, such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), or FRAP (Ferric Reducing Antioxidant Power) assays. We recommend using at least three different assays. It is important to consider whether to test live or inactivated cells, post-culture supernatant, cell lysates, protein fractions or purified exopolysaccharides. In conclusion, due to their properties, lactic acid bacteria strains may prove to be an interesting and natural alternative to synthetic antioxidants used in food production. Lactic acid bacteria have been shown to be not only useful as microorganisms that support the proper functioning of the digestive tract or as probiotics, but also allow their antioxidant properties to be noticed and strengthen the defence against oxidative stress.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70229","citationCount":"0","resultStr":"{\"title\":\"Antioxidant Properties of Food-Derived Lactic Acid Bacteria: A Review\",\"authors\":\"Anna Łepecka,&nbsp;Danuta Kołożyn-Krajewska\",\"doi\":\"10.1111/1751-7915.70229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanisms of antioxidant action of lactic acid bacteria (LAB) have not been fully explained. This review aimed to characterise the antioxidant properties that can be presented by LAB strains isolated from food. The review presents a definition and classification of the antioxidants, mechanisms of antioxidant action of LAB, discusses the most popular antioxidant assays, taking into account the mechanisms underlying each test and the practice of assessing antioxidant capacity, and presents examples of studies of food-derived LAB and fermented food with antioxidant properties. LAB are an important part of the human microbiota, and their role in antioxidant processes is extremely important. They can respond quickly and effectively to free radicals by enhancing antioxidant activity, chelating metal ions, producing antioxidant enzymes and other metabolites, and thus mitigating the damage caused by oxidative stress. This review also presents methods for testing antioxidant properties that can be used for LAB screening. The most commonly used methods are the classical methods of testing antioxidant activity, such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), or FRAP (Ferric Reducing Antioxidant Power) assays. We recommend using at least three different assays. It is important to consider whether to test live or inactivated cells, post-culture supernatant, cell lysates, protein fractions or purified exopolysaccharides. In conclusion, due to their properties, lactic acid bacteria strains may prove to be an interesting and natural alternative to synthetic antioxidants used in food production. Lactic acid bacteria have been shown to be not only useful as microorganisms that support the proper functioning of the digestive tract or as probiotics, but also allow their antioxidant properties to be noticed and strengthen the defence against oxidative stress.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70229\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70229","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳酸菌(LAB)的抗氧化作用机制尚未完全阐明。本综述旨在描述从食品中分离的乳酸菌的抗氧化特性。本文介绍了抗氧化剂的定义和分类,乳酸菌的抗氧化作用机制,讨论了最流行的抗氧化检测方法,考虑了每种检测方法的机制和评估抗氧化能力的实践,并介绍了食品来源的乳酸菌和发酵食品抗氧化性能的研究实例。乳酸菌是人体微生物群的重要组成部分,其在抗氧化过程中的作用极为重要。它们通过增强抗氧化活性,螯合金属离子,产生抗氧化酶等代谢产物,对自由基作出快速有效的反应,从而减轻氧化应激造成的损害。本文还介绍了可用于LAB筛选的抗氧化性能测试方法。最常用的方法是测试抗氧化活性的经典方法,如DPPH(2,2-二苯基-1-吡啶肼),ABTS(2'-氮基-双(3-乙基苯并噻唑-6-磺酸))或FRAP(铁还原抗氧化能力)测定。我们建议至少使用三种不同的检测方法。重要的是要考虑是否检测活细胞或灭活细胞、培养后上清、细胞裂解物、蛋白质部分或纯化的外多糖。总之,由于它们的特性,乳酸菌菌株可能被证明是食品生产中合成抗氧化剂的一种有趣的天然替代品。乳酸菌已被证明不仅是有用的微生物,支持消化道的正常功能或作为益生菌,但也允许他们的抗氧化特性被注意到,加强对氧化应激的防御。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Antioxidant Properties of Food-Derived Lactic Acid Bacteria: A Review

Antioxidant Properties of Food-Derived Lactic Acid Bacteria: A Review

Antioxidant Properties of Food-Derived Lactic Acid Bacteria: A Review

Antioxidant Properties of Food-Derived Lactic Acid Bacteria: A Review

Antioxidant Properties of Food-Derived Lactic Acid Bacteria: A Review

Antioxidant Properties of Food-Derived Lactic Acid Bacteria: A Review

The mechanisms of antioxidant action of lactic acid bacteria (LAB) have not been fully explained. This review aimed to characterise the antioxidant properties that can be presented by LAB strains isolated from food. The review presents a definition and classification of the antioxidants, mechanisms of antioxidant action of LAB, discusses the most popular antioxidant assays, taking into account the mechanisms underlying each test and the practice of assessing antioxidant capacity, and presents examples of studies of food-derived LAB and fermented food with antioxidant properties. LAB are an important part of the human microbiota, and their role in antioxidant processes is extremely important. They can respond quickly and effectively to free radicals by enhancing antioxidant activity, chelating metal ions, producing antioxidant enzymes and other metabolites, and thus mitigating the damage caused by oxidative stress. This review also presents methods for testing antioxidant properties that can be used for LAB screening. The most commonly used methods are the classical methods of testing antioxidant activity, such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), or FRAP (Ferric Reducing Antioxidant Power) assays. We recommend using at least three different assays. It is important to consider whether to test live or inactivated cells, post-culture supernatant, cell lysates, protein fractions or purified exopolysaccharides. In conclusion, due to their properties, lactic acid bacteria strains may prove to be an interesting and natural alternative to synthetic antioxidants used in food production. Lactic acid bacteria have been shown to be not only useful as microorganisms that support the proper functioning of the digestive tract or as probiotics, but also allow their antioxidant properties to be noticed and strengthen the defence against oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信