通过“自由基+冰”机制在星际脏冰膜上形成甲酸甲酯和乙醇醛的原子模型。

IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jessica Perrero, Stefano Pantaleone, Piero Ugliengo, Albert Rimola
{"title":"通过“自由基+冰”机制在星际脏冰膜上形成甲酸甲酯和乙醇醛的原子模型。","authors":"Jessica Perrero, Stefano Pantaleone, Piero Ugliengo, Albert Rimola","doi":"10.1002/cplu.202500324","DOIUrl":null,"url":null,"abstract":"<p><p>Methylformate (MF) and glycolaldehyde (GA) are two primogenital organic molecules detected in both cold and warm regions of the interstellar medium (ISM). Both gas-phase and grain-surface pathways have been proposed to explain their abundances, yet uncertainties remain, since prevailing grain-surface mechanisms favor the formation of GA over MF, which mismatch observations in different ISM regions. In this work, MF and GA synthetic reactions are atomistically modeled on surfaces containing variable H <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> O and CO percentages (interstellar dirty ices), in which one of the reactants coming from the gas phase reacts with an icy CO, thus adopting the following two-step \"radical + ice\" mechanism: for MF, OCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>3</mn></msub> </mrow> <annotation>$_3$</annotation></semantics> </math> + <math> <semantics> <mrow><msub><mi>CO</mi> <mrow><mo>(</mo> <mi>ice</mi> <mo>)</mo></mrow> </msub> </mrow> <annotation>$${\\mathrm{CO}}_{(\\mathrm{ice})}$$</annotation></semantics> </math> <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\to$</annotation></semantics> </math> COOCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>3</mn></msub> </mrow> <annotation>$_3$</annotation></semantics> </math> + H <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\to$</annotation></semantics> </math> HCOOCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>3</mn></msub> </mrow> <annotation>$_3$</annotation></semantics> </math> ; for GA, CH <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> OH +  <math> <semantics> <mrow><msub><mi>CO</mi> <mrow><mo>(</mo> <mi>ice</mi> <mo>)</mo></mrow> </msub> </mrow> <annotation>$${\\mathrm{CO}}_{(\\mathrm{ice})}$$</annotation></semantics> </math> <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\to$</annotation></semantics> </math> COCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> OH + H <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\to$</annotation></semantics> </math> HCOCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> OH. Calculations show that the first step presents an energy barrier (32-38 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> for MF and 17-20 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> for GA), while the second step is nearly barrierless. Although the energetics favor GA formation, the observed abundances are better explained by desorption phenomena rather than reaction barriers are argued. Specifically, the weaker binding energies of MF (16.8-46.1 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> ) than GA (28.4-90.2 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> ) support its higher abundance in the ISM.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500324"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic Modeling of Methyl Formate and Glycolaldehyde Formation on Interstellar Dirty Ice Mantles via a \\\"Radical + Ice\\\" Mechanism.\",\"authors\":\"Jessica Perrero, Stefano Pantaleone, Piero Ugliengo, Albert Rimola\",\"doi\":\"10.1002/cplu.202500324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methylformate (MF) and glycolaldehyde (GA) are two primogenital organic molecules detected in both cold and warm regions of the interstellar medium (ISM). Both gas-phase and grain-surface pathways have been proposed to explain their abundances, yet uncertainties remain, since prevailing grain-surface mechanisms favor the formation of GA over MF, which mismatch observations in different ISM regions. In this work, MF and GA synthetic reactions are atomistically modeled on surfaces containing variable H <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> O and CO percentages (interstellar dirty ices), in which one of the reactants coming from the gas phase reacts with an icy CO, thus adopting the following two-step \\\"radical + ice\\\" mechanism: for MF, OCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>3</mn></msub> </mrow> <annotation>$_3$</annotation></semantics> </math> + <math> <semantics> <mrow><msub><mi>CO</mi> <mrow><mo>(</mo> <mi>ice</mi> <mo>)</mo></mrow> </msub> </mrow> <annotation>$${\\\\mathrm{CO}}_{(\\\\mathrm{ice})}$$</annotation></semantics> </math> <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\\\to$</annotation></semantics> </math> COOCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>3</mn></msub> </mrow> <annotation>$_3$</annotation></semantics> </math> + H <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\\\to$</annotation></semantics> </math> HCOOCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>3</mn></msub> </mrow> <annotation>$_3$</annotation></semantics> </math> ; for GA, CH <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> OH +  <math> <semantics> <mrow><msub><mi>CO</mi> <mrow><mo>(</mo> <mi>ice</mi> <mo>)</mo></mrow> </msub> </mrow> <annotation>$${\\\\mathrm{CO}}_{(\\\\mathrm{ice})}$$</annotation></semantics> </math> <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\\\to$</annotation></semantics> </math> COCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> OH + H <math> <semantics><mrow><mo>→</mo></mrow> <annotation>$\\\\to$</annotation></semantics> </math> HCOCH <math> <semantics> <mrow><msub><mrow></mrow> <mn>2</mn></msub> </mrow> <annotation>$_2$</annotation></semantics> </math> OH. Calculations show that the first step presents an energy barrier (32-38 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> for MF and 17-20 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> for GA), while the second step is nearly barrierless. Although the energetics favor GA formation, the observed abundances are better explained by desorption phenomena rather than reaction barriers are argued. Specifically, the weaker binding energies of MF (16.8-46.1 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> ) than GA (28.4-90.2 kJ mol <math> <semantics> <mrow><msup><mrow></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> <annotation>$^{-1}$</annotation></semantics> </math> ) support its higher abundance in the ISM.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202500324\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202500324\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500324","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

甲基甲酸酯(MF)和乙醇醛(GA)是在星际介质(ISM)的冷区和暖区都能检测到的两种原始有机分子。气相和颗粒表面两种途径都被提出来解释它们的丰度,但仍然存在不确定性,因为主流的颗粒表面机制倾向于GA而不是MF的形成,这与不同ISM区域的观测结果不匹配。在这项工作中,MF和GA合成反应在含有可变h2 $_2$ O和CO百分比(星际脏冰)的表面上进行原子模拟,其中一种来自气相的反应物与冰冷的CO反应,从而采用以下两步“自由基+冰”机制:对于MF, OCH 3 $_3$ + CO (ice) $${\mathrm{CO}}_{(\mathrm{ice})}$$→$\to$ COOCH 3 $_3$ + H→$\to$ HCOOCH 3 $_3$;对于GA, ch2 $_2$ OH + CO(冰)$${\mathrm{CO}}_{(\mathrm{ice})}$$→$\to$ coch2 $_2$ OH + H→$\to$ hcoch2 $_2$ OH。计算表明,第一步存在能垒(MF为32-38 kJ mol - 1 $^{-1}$, GA为17-20 kJ mol - 1 $^{-1}$),而第二步几乎没有能垒。虽然能量学倾向于GA的形成,但所观察到的丰度更适合用解吸现象来解释,而不是用反应障碍来解释。具体来说,MF的结合能(16.8-46.1 kJ mol - 1 $^{-1}$)弱于GA (28.4-90.2 kJ mol - 1 $^{-1}$),支持其在ISM中较高的丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomistic Modeling of Methyl Formate and Glycolaldehyde Formation on Interstellar Dirty Ice Mantles via a "Radical + Ice" Mechanism.

Methylformate (MF) and glycolaldehyde (GA) are two primogenital organic molecules detected in both cold and warm regions of the interstellar medium (ISM). Both gas-phase and grain-surface pathways have been proposed to explain their abundances, yet uncertainties remain, since prevailing grain-surface mechanisms favor the formation of GA over MF, which mismatch observations in different ISM regions. In this work, MF and GA synthetic reactions are atomistically modeled on surfaces containing variable H 2 $_2$ O and CO percentages (interstellar dirty ices), in which one of the reactants coming from the gas phase reacts with an icy CO, thus adopting the following two-step "radical + ice" mechanism: for MF, OCH 3 $_3$ + CO ( ice ) $${\mathrm{CO}}_{(\mathrm{ice})}$$ $\to$ COOCH 3 $_3$ + H $\to$ HCOOCH 3 $_3$ ; for GA, CH 2 $_2$ OH +  CO ( ice ) $${\mathrm{CO}}_{(\mathrm{ice})}$$ $\to$ COCH 2 $_2$ OH + H $\to$ HCOCH 2 $_2$ OH. Calculations show that the first step presents an energy barrier (32-38 kJ mol - 1 $^{-1}$ for MF and 17-20 kJ mol - 1 $^{-1}$ for GA), while the second step is nearly barrierless. Although the energetics favor GA formation, the observed abundances are better explained by desorption phenomena rather than reaction barriers are argued. Specifically, the weaker binding energies of MF (16.8-46.1 kJ mol - 1 $^{-1}$ ) than GA (28.4-90.2 kJ mol - 1 $^{-1}$ ) support its higher abundance in the ISM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信