控制锂金属阳极界面化学的多价阳离子策略。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Peng Yan, Rui Xu, Matthias Weiling, Bixian Ying, Marian Cristian Stan, Christian Wölke, Masoud Baghernejad, Jia-Qi Huang, Martin Winter, Peter Bieker, Isidora Cekic-Laskovic
{"title":"控制锂金属阳极界面化学的多价阳离子策略。","authors":"Peng Yan, Rui Xu, Matthias Weiling, Bixian Ying, Marian Cristian Stan, Christian Wölke, Masoud Baghernejad, Jia-Qi Huang, Martin Winter, Peter Bieker, Isidora Cekic-Laskovic","doi":"10.1002/smtd.202501449","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of a solid electrolyte interphase (SEI) in lithium metal batteries (LMBs) is crucial for the reversible deposition and dissolution of lithium (Li). Herein, a multi-valent cation (MVC) is proposed approach to enable superior LMB performance without increasing conducting salt concentration, thus reducing the cost and environmental footprint of LMBs. In this approach, a minimal amount of magnesium carbonate (MgCO<sub>3</sub>) of 0.05 m is added to a lithium hexafluorophosphate (LiPF<sub>6</sub>) based electrolyte, which effectively scavenges hydrogen fluoride (HF) generated from hydrolysis of LiPF<sub>6</sub>. Concurrently, the HF scavenging process dissolves MgCO<sub>3</sub> microparticles and releases Mg<sup>2+</sup> cations. It is noteworthy that multivalent Mg<sup>2+</sup> cations, due to their high charge density, enrich the electric double layer with anions that preferentially decompose to form an anion-derived SEI. Consequently, the MVC approach facilitates enhanced reversibility of Li metal deposition and dissolution, as well as stable galvanostatic cycling of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811)||Li cells. This approach provides a highly effective pathway for designing anion-derived SEI, offering new insights into the control of Li metal interfaces.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01449"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Valent Cation Strategies for Controlling Interphase Chemistry at the Lithium Metal Anode.\",\"authors\":\"Peng Yan, Rui Xu, Matthias Weiling, Bixian Ying, Marian Cristian Stan, Christian Wölke, Masoud Baghernejad, Jia-Qi Huang, Martin Winter, Peter Bieker, Isidora Cekic-Laskovic\",\"doi\":\"10.1002/smtd.202501449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effectiveness of a solid electrolyte interphase (SEI) in lithium metal batteries (LMBs) is crucial for the reversible deposition and dissolution of lithium (Li). Herein, a multi-valent cation (MVC) is proposed approach to enable superior LMB performance without increasing conducting salt concentration, thus reducing the cost and environmental footprint of LMBs. In this approach, a minimal amount of magnesium carbonate (MgCO<sub>3</sub>) of 0.05 m is added to a lithium hexafluorophosphate (LiPF<sub>6</sub>) based electrolyte, which effectively scavenges hydrogen fluoride (HF) generated from hydrolysis of LiPF<sub>6</sub>. Concurrently, the HF scavenging process dissolves MgCO<sub>3</sub> microparticles and releases Mg<sup>2+</sup> cations. It is noteworthy that multivalent Mg<sup>2+</sup> cations, due to their high charge density, enrich the electric double layer with anions that preferentially decompose to form an anion-derived SEI. Consequently, the MVC approach facilitates enhanced reversibility of Li metal deposition and dissolution, as well as stable galvanostatic cycling of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811)||Li cells. This approach provides a highly effective pathway for designing anion-derived SEI, offering new insights into the control of Li metal interfaces.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01449\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501449\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501449","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池(lmb)中固体电解质界面(SEI)的有效性对锂离子的可逆沉积和溶解至关重要。本文提出了一种多价阳离子(MVC)的方法,在不增加导电盐浓度的情况下,使LMB具有优越的性能,从而降低了LMB的成本和环境足迹。在该方法中,在六氟磷酸锂(LiPF6)电解质中加入0.05 m的微量碳酸镁(MgCO3),可有效清除LiPF6水解产生的氟化氢(HF)。同时,HF清除过程溶解MgCO3微粒并释放Mg2+阳离子。值得注意的是,多价Mg2+阳离子由于其高电荷密度,使双电层富集阴离子,这些阴离子优先分解形成阴离子衍生的SEI。因此,MVC方法有助于增强锂金属沉积和溶解的可逆性,以及LiNi0.8Mn0.1Co0.1O2 (NMC811)||锂电池的稳定恒流循环。这种方法为设计阴离子衍生的SEI提供了一个非常有效的途径,为Li金属界面的控制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Valent Cation Strategies for Controlling Interphase Chemistry at the Lithium Metal Anode.

The effectiveness of a solid electrolyte interphase (SEI) in lithium metal batteries (LMBs) is crucial for the reversible deposition and dissolution of lithium (Li). Herein, a multi-valent cation (MVC) is proposed approach to enable superior LMB performance without increasing conducting salt concentration, thus reducing the cost and environmental footprint of LMBs. In this approach, a minimal amount of magnesium carbonate (MgCO3) of 0.05 m is added to a lithium hexafluorophosphate (LiPF6) based electrolyte, which effectively scavenges hydrogen fluoride (HF) generated from hydrolysis of LiPF6. Concurrently, the HF scavenging process dissolves MgCO3 microparticles and releases Mg2+ cations. It is noteworthy that multivalent Mg2+ cations, due to their high charge density, enrich the electric double layer with anions that preferentially decompose to form an anion-derived SEI. Consequently, the MVC approach facilitates enhanced reversibility of Li metal deposition and dissolution, as well as stable galvanostatic cycling of LiNi0.8Mn0.1Co0.1O2 (NMC811)||Li cells. This approach provides a highly effective pathway for designing anion-derived SEI, offering new insights into the control of Li metal interfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信