{"title":"深层土壤根系生产力对降水变化的敏感性较高","authors":"Xinxing Huo, Bingwei Zhang, Philippe Ciais, Yiqi Luo, Changhui Peng, Yuhong Tian, Xiuchen Wu","doi":"10.1111/geb.70121","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Plastic responses of root productivity to precipitation changes would facilitate plant survival under drought stress. However, whether the responses are pervasive along the soil profile remains unknown. Here, we compiled a global dataset of root productivity at different soil depths from in situ precipitation manipulation experiments, and investigated whether the root productivity responded to precipitation changes uniformly or nonuniformly along the soil profile across diverse biomes.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>Studies published during 2000–2022.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Mature woody plants and herbaceous.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Meta-analysis was conducted to evaluate the responses of root productivity at different soil depths to precipitation changes. The partial least squares path model (PLS-PM) was used to explore the pathways how various biotic and abiotic factors regulate these responses at different soil depths and across different vegetation types.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Root productivity responded divergently to decreased precipitation between surface and deep soil. Decreased precipitation significantly reduced root productivity in surface soil (effect size: −0.19 ± 0.05), but significantly increased root productivity in deep soil (effect size: 0.18 ± 0.13), particularly under long-term (> 3 years) and severe (> 50% reduction in precipitation) drought treatments. Increased precipitation stimulates root productivity in all soil layers, with increasing stimulation towards deep soil depth.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>This study highlights higher sensitivity of deep soil root productivity to precipitation changes, providing crucial insights into potential shifts in ecosystem belowground structure and functioning in a more extreme climate regime.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 9","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70121","citationCount":"0","resultStr":"{\"title\":\"Higher Sensitivity of Deep Soil Root Productivity to Precipitation Changes\",\"authors\":\"Xinxing Huo, Bingwei Zhang, Philippe Ciais, Yiqi Luo, Changhui Peng, Yuhong Tian, Xiuchen Wu\",\"doi\":\"10.1111/geb.70121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Plastic responses of root productivity to precipitation changes would facilitate plant survival under drought stress. However, whether the responses are pervasive along the soil profile remains unknown. Here, we compiled a global dataset of root productivity at different soil depths from in situ precipitation manipulation experiments, and investigated whether the root productivity responded to precipitation changes uniformly or nonuniformly along the soil profile across diverse biomes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Global.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>Studies published during 2000–2022.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Mature woody plants and herbaceous.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Meta-analysis was conducted to evaluate the responses of root productivity at different soil depths to precipitation changes. The partial least squares path model (PLS-PM) was used to explore the pathways how various biotic and abiotic factors regulate these responses at different soil depths and across different vegetation types.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Root productivity responded divergently to decreased precipitation between surface and deep soil. Decreased precipitation significantly reduced root productivity in surface soil (effect size: −0.19 ± 0.05), but significantly increased root productivity in deep soil (effect size: 0.18 ± 0.13), particularly under long-term (> 3 years) and severe (> 50% reduction in precipitation) drought treatments. Increased precipitation stimulates root productivity in all soil layers, with increasing stimulation towards deep soil depth.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>This study highlights higher sensitivity of deep soil root productivity to precipitation changes, providing crucial insights into potential shifts in ecosystem belowground structure and functioning in a more extreme climate regime.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"34 9\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.70121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.70121\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.70121","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Higher Sensitivity of Deep Soil Root Productivity to Precipitation Changes
Aim
Plastic responses of root productivity to precipitation changes would facilitate plant survival under drought stress. However, whether the responses are pervasive along the soil profile remains unknown. Here, we compiled a global dataset of root productivity at different soil depths from in situ precipitation manipulation experiments, and investigated whether the root productivity responded to precipitation changes uniformly or nonuniformly along the soil profile across diverse biomes.
Location
Global.
Time Period
Studies published during 2000–2022.
Major Taxa Studied
Mature woody plants and herbaceous.
Methods
Meta-analysis was conducted to evaluate the responses of root productivity at different soil depths to precipitation changes. The partial least squares path model (PLS-PM) was used to explore the pathways how various biotic and abiotic factors regulate these responses at different soil depths and across different vegetation types.
Results
Root productivity responded divergently to decreased precipitation between surface and deep soil. Decreased precipitation significantly reduced root productivity in surface soil (effect size: −0.19 ± 0.05), but significantly increased root productivity in deep soil (effect size: 0.18 ± 0.13), particularly under long-term (> 3 years) and severe (> 50% reduction in precipitation) drought treatments. Increased precipitation stimulates root productivity in all soil layers, with increasing stimulation towards deep soil depth.
Main Conclusions
This study highlights higher sensitivity of deep soil root productivity to precipitation changes, providing crucial insights into potential shifts in ecosystem belowground structure and functioning in a more extreme climate regime.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.