光热退火微差合成纳米碳及同时单原子功能化

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-18 DOI:10.1021/acsnano.5c11229
Dogyeong Jeon, , , Hamin Shin, , , Jun-Hwe Cha, , , HongHui Kim, , , Seohak Park, , , Jaewan Ahn, , , Su-Ho Cho, , , Chungseong Park, , , Dong-Ha Kim, , , Euichul Shin, , , Hionsuck Baik, , , Jihan Kim, , , Sung-Yool Choi*, , and , Il-Doo Kim*, 
{"title":"光热退火微差合成纳米碳及同时单原子功能化","authors":"Dogyeong Jeon,&nbsp;, ,&nbsp;Hamin Shin,&nbsp;, ,&nbsp;Jun-Hwe Cha,&nbsp;, ,&nbsp;HongHui Kim,&nbsp;, ,&nbsp;Seohak Park,&nbsp;, ,&nbsp;Jaewan Ahn,&nbsp;, ,&nbsp;Su-Ho Cho,&nbsp;, ,&nbsp;Chungseong Park,&nbsp;, ,&nbsp;Dong-Ha Kim,&nbsp;, ,&nbsp;Euichul Shin,&nbsp;, ,&nbsp;Hionsuck Baik,&nbsp;, ,&nbsp;Jihan Kim,&nbsp;, ,&nbsp;Sung-Yool Choi*,&nbsp;, and ,&nbsp;Il-Doo Kim*,&nbsp;","doi":"10.1021/acsnano.5c11229","DOIUrl":null,"url":null,"abstract":"<p >Carbon nanoonions (CNOs), known for their nanometer-scale surface curvature and potential for versatile functionalization, are widely used in energy and environmental applications. However, they face challenges from energy-intensive synthesis and time-consuming post-treatments, resulting in low yields and poor-quality sp<sup>2</sup> shells, which limit their commercial viability. In this study, we introduce a direct-contact annealing (DCA) platform reaching up to 3030 K within 1.4 ms (2.2 × 10<sup>6</sup> K s<sup>–1</sup>), utilizing black-colored photothermal agents for millisecond-scale synthesis of CNO under ambient air. Moreover, we demonstrate simultaneous in situ single-atom catalyst (SACs) functionalization with eight different metal elements on the outer surface of CNOs. A case study on Pt SAC-functionalized CNOs demonstrates outstanding hydrogen evolution reaction performance. This DCA platform provides a promising alternative to conventional harsh conditions for SAC/CNO electrocatalyst synthesis, enabling ultrafast and facile production of surface-functionalized catalysts with exceptional energy efficiency and scalability advantages for advanced energy applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 38","pages":"34235–34247"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermal Annealing-Enabled Millisecond Synthesis of Carbon Nanoonions and Simultaneous Single-Atom Functionalization\",\"authors\":\"Dogyeong Jeon,&nbsp;, ,&nbsp;Hamin Shin,&nbsp;, ,&nbsp;Jun-Hwe Cha,&nbsp;, ,&nbsp;HongHui Kim,&nbsp;, ,&nbsp;Seohak Park,&nbsp;, ,&nbsp;Jaewan Ahn,&nbsp;, ,&nbsp;Su-Ho Cho,&nbsp;, ,&nbsp;Chungseong Park,&nbsp;, ,&nbsp;Dong-Ha Kim,&nbsp;, ,&nbsp;Euichul Shin,&nbsp;, ,&nbsp;Hionsuck Baik,&nbsp;, ,&nbsp;Jihan Kim,&nbsp;, ,&nbsp;Sung-Yool Choi*,&nbsp;, and ,&nbsp;Il-Doo Kim*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c11229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon nanoonions (CNOs), known for their nanometer-scale surface curvature and potential for versatile functionalization, are widely used in energy and environmental applications. However, they face challenges from energy-intensive synthesis and time-consuming post-treatments, resulting in low yields and poor-quality sp<sup>2</sup> shells, which limit their commercial viability. In this study, we introduce a direct-contact annealing (DCA) platform reaching up to 3030 K within 1.4 ms (2.2 × 10<sup>6</sup> K s<sup>–1</sup>), utilizing black-colored photothermal agents for millisecond-scale synthesis of CNO under ambient air. Moreover, we demonstrate simultaneous in situ single-atom catalyst (SACs) functionalization with eight different metal elements on the outer surface of CNOs. A case study on Pt SAC-functionalized CNOs demonstrates outstanding hydrogen evolution reaction performance. This DCA platform provides a promising alternative to conventional harsh conditions for SAC/CNO electrocatalyst synthesis, enabling ultrafast and facile production of surface-functionalized catalysts with exceptional energy efficiency and scalability advantages for advanced energy applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 38\",\"pages\":\"34235–34247\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c11229\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c11229","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米洋葱(CNOs)以其纳米级的表面曲率和多功能功能化的潜力而闻名,广泛应用于能源和环境领域。然而,它们面临着能量密集的合成和耗时的后处理的挑战,导致sp2壳的低产量和低质量,这限制了它们的商业可行性。在这项研究中,我们引入了一个直接接触退火(DCA)平台,在1.4 ms (2.2 × 106 K s-1)内达到3030 K,利用黑色光热剂在环境空气下进行毫秒级的CNO合成。此外,我们证明了同时在原位单原子催化剂(SACs)功能化与8种不同的金属元素在CNOs的外表面。以Pt sac功能化的CNOs为例,证明了其优异的析氢反应性能。该DCA平台为SAC/CNO电催化剂合成提供了一个有希望的替代条件,使表面功能化催化剂的超快速和简便生产具有卓越的能源效率和可扩展性优势,可用于先进的能源应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photothermal Annealing-Enabled Millisecond Synthesis of Carbon Nanoonions and Simultaneous Single-Atom Functionalization

Photothermal Annealing-Enabled Millisecond Synthesis of Carbon Nanoonions and Simultaneous Single-Atom Functionalization

Photothermal Annealing-Enabled Millisecond Synthesis of Carbon Nanoonions and Simultaneous Single-Atom Functionalization

Carbon nanoonions (CNOs), known for their nanometer-scale surface curvature and potential for versatile functionalization, are widely used in energy and environmental applications. However, they face challenges from energy-intensive synthesis and time-consuming post-treatments, resulting in low yields and poor-quality sp2 shells, which limit their commercial viability. In this study, we introduce a direct-contact annealing (DCA) platform reaching up to 3030 K within 1.4 ms (2.2 × 106 K s–1), utilizing black-colored photothermal agents for millisecond-scale synthesis of CNO under ambient air. Moreover, we demonstrate simultaneous in situ single-atom catalyst (SACs) functionalization with eight different metal elements on the outer surface of CNOs. A case study on Pt SAC-functionalized CNOs demonstrates outstanding hydrogen evolution reaction performance. This DCA platform provides a promising alternative to conventional harsh conditions for SAC/CNO electrocatalyst synthesis, enabling ultrafast and facile production of surface-functionalized catalysts with exceptional energy efficiency and scalability advantages for advanced energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信