面向图像超分辨率的语义驱动全局-局部融合变压器。

IF 13.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kaibing Zhang,Zhouwei Cheng,Xin He,Jie Li,Xinbo Gao
{"title":"面向图像超分辨率的语义驱动全局-局部融合变压器。","authors":"Kaibing Zhang,Zhouwei Cheng,Xin He,Jie Li,Xinbo Gao","doi":"10.1109/tip.2025.3609106","DOIUrl":null,"url":null,"abstract":"Image Super-Resolution (SR) has seen remarkable progress with the emergence of transformer-based architectures. However, due to the high computational cost, many existing transformer-based SR methods limit their attention to local windows, which hinders their ability to model long-range dependencies and global structures. To address these challenges, we propose a novel SR framework named Semantic-Driven Global-Local Fusion Transformer (SGLFT). The proposed model enhances the receptive field by combining a Hybrid Window Transformer (HWT) and a Scalable Transformer Module (STM) to jointly capture local textures and global context. To further strengthen the semantic consistency of reconstruction, we introduce a Semantic Extraction Module (SEM) that distills high-level semantic priors from the input. These semantic cues are adaptively integrated with visual features through an Adaptive Feature Fusion Semantic Integration Module (AFFSIM). Extensive experiments on standard benchmarks demonstrate the effectiveness of SGLFT in producing visually faithful and structurally consistent SR results. The code will be available at https://github.com/kbzhang0505/SGLFT.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"22 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic-Driven Global-Local Fusion Transformer for Image Super-Resolution.\",\"authors\":\"Kaibing Zhang,Zhouwei Cheng,Xin He,Jie Li,Xinbo Gao\",\"doi\":\"10.1109/tip.2025.3609106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image Super-Resolution (SR) has seen remarkable progress with the emergence of transformer-based architectures. However, due to the high computational cost, many existing transformer-based SR methods limit their attention to local windows, which hinders their ability to model long-range dependencies and global structures. To address these challenges, we propose a novel SR framework named Semantic-Driven Global-Local Fusion Transformer (SGLFT). The proposed model enhances the receptive field by combining a Hybrid Window Transformer (HWT) and a Scalable Transformer Module (STM) to jointly capture local textures and global context. To further strengthen the semantic consistency of reconstruction, we introduce a Semantic Extraction Module (SEM) that distills high-level semantic priors from the input. These semantic cues are adaptively integrated with visual features through an Adaptive Feature Fusion Semantic Integration Module (AFFSIM). Extensive experiments on standard benchmarks demonstrate the effectiveness of SGLFT in producing visually faithful and structurally consistent SR results. The code will be available at https://github.com/kbzhang0505/SGLFT.\",\"PeriodicalId\":13217,\"journal\":{\"name\":\"IEEE Transactions on Image Processing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tip.2025.3609106\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tip.2025.3609106","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着基于变压器的架构的出现,图像超分辨率(SR)已经取得了显著的进步。然而,由于计算成本高,许多现有的基于变压器的SR方法限制了它们对局部窗口的关注,这阻碍了它们对长期依赖关系和全局结构的建模能力。为了解决这些挑战,我们提出了一种新的SR框架,称为语义驱动的全局-局部融合变压器(SGLFT)。该模型通过结合混合窗口变换(HWT)和可扩展变换模块(STM)来增强接收场,以共同捕获局部纹理和全局上下文。为了进一步加强重建的语义一致性,我们引入了一个语义提取模块(SEM),从输入中提取高级语义先验。这些语义线索通过自适应特征融合语义集成模块(AFFSIM)与视觉特征自适应集成。在标准基准上的大量实验证明了SGLFT在产生视觉上忠实和结构上一致的SR结果方面的有效性。代码可在https://github.com/kbzhang0505/SGLFT上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic-Driven Global-Local Fusion Transformer for Image Super-Resolution.
Image Super-Resolution (SR) has seen remarkable progress with the emergence of transformer-based architectures. However, due to the high computational cost, many existing transformer-based SR methods limit their attention to local windows, which hinders their ability to model long-range dependencies and global structures. To address these challenges, we propose a novel SR framework named Semantic-Driven Global-Local Fusion Transformer (SGLFT). The proposed model enhances the receptive field by combining a Hybrid Window Transformer (HWT) and a Scalable Transformer Module (STM) to jointly capture local textures and global context. To further strengthen the semantic consistency of reconstruction, we introduce a Semantic Extraction Module (SEM) that distills high-level semantic priors from the input. These semantic cues are adaptively integrated with visual features through an Adaptive Feature Fusion Semantic Integration Module (AFFSIM). Extensive experiments on standard benchmarks demonstrate the effectiveness of SGLFT in producing visually faithful and structurally consistent SR results. The code will be available at https://github.com/kbzhang0505/SGLFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信