四分之一波片几何相位透镜的三波前调制多深度切换,用于收敛调节匹配扩展现实。

IF 23.4 Q1 OPTICS
Jung-Yeop Shin,Jae-Won Lee,Hafiz Saad Khaliq,Erkhembaatar Dashdavaa,Munkh-Uchral Erdenebat,Min-Seok Kim,Jin-Hyeok Seo,Young-Min Cho,Hak-Rin Kim
{"title":"四分之一波片几何相位透镜的三波前调制多深度切换,用于收敛调节匹配扩展现实。","authors":"Jung-Yeop Shin,Jae-Won Lee,Hafiz Saad Khaliq,Erkhembaatar Dashdavaa,Munkh-Uchral Erdenebat,Min-Seok Kim,Jin-Hyeok Seo,Young-Min Cho,Hak-Rin Kim","doi":"10.1038/s41377-025-02026-2","DOIUrl":null,"url":null,"abstract":"We present a novel approach to resolving the vergence-accommodation conflict (VAC) in extended reality (XR) optics by introducing a quarter-waveplate (QWP) geometric phase lens (GPL) capable of triple wavefront modulation-focusing, defocusing, and non-modulating at infinity. This polarization-driven behavior is interpreted using contour trajectories on the Poincaré sphere and compared against conventional half-waveplate (HWP) GPLs. Leveraging this property, we propose a bi-stacked QWP GPL module that enables nine distinct varifocal states through polarization-controlled input selection and output filtering. In contrast, HWP-based modules under equivalent stacking conditions are limited to four focal states. The QWP GPL module supports a compact varifocal system spanning a continuous depth range from 24.27 cm to infinity, with a 0.3-diopter interval aligned with the human visual comfort zone. Importantly, the number of representable focal depths scales as 3n for n stacked layers, offering a (1.5)n-fold improvement over the 2n scaling of HWP systems. This enables finer depth transitions using fewer lens units while retaining both compactness and optical modularity, establishing a depth-switchable imaging platform that enhances visual comfort and depth fidelity in next-generation XR display systems.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"56 1","pages":"333"},"PeriodicalIF":23.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-depth switching by triple wavefront modulation of quarter-waveplate geometric phase lenses for vergence-accommodation-matching extended reality.\",\"authors\":\"Jung-Yeop Shin,Jae-Won Lee,Hafiz Saad Khaliq,Erkhembaatar Dashdavaa,Munkh-Uchral Erdenebat,Min-Seok Kim,Jin-Hyeok Seo,Young-Min Cho,Hak-Rin Kim\",\"doi\":\"10.1038/s41377-025-02026-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to resolving the vergence-accommodation conflict (VAC) in extended reality (XR) optics by introducing a quarter-waveplate (QWP) geometric phase lens (GPL) capable of triple wavefront modulation-focusing, defocusing, and non-modulating at infinity. This polarization-driven behavior is interpreted using contour trajectories on the Poincaré sphere and compared against conventional half-waveplate (HWP) GPLs. Leveraging this property, we propose a bi-stacked QWP GPL module that enables nine distinct varifocal states through polarization-controlled input selection and output filtering. In contrast, HWP-based modules under equivalent stacking conditions are limited to four focal states. The QWP GPL module supports a compact varifocal system spanning a continuous depth range from 24.27 cm to infinity, with a 0.3-diopter interval aligned with the human visual comfort zone. Importantly, the number of representable focal depths scales as 3n for n stacked layers, offering a (1.5)n-fold improvement over the 2n scaling of HWP systems. This enables finer depth transitions using fewer lens units while retaining both compactness and optical modularity, establishing a depth-switchable imaging platform that enhances visual comfort and depth fidelity in next-generation XR display systems.\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"56 1\",\"pages\":\"333\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-02026-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02026-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种解决扩展现实(XR)光学中的收敛调节冲突(VAC)的新方法,通过引入四分之一波片(QWP)几何相位透镜(GPL),该透镜能够在无限远处进行三重波前调制-聚焦,散焦和非调制。利用poincar球上的等高线轨迹解释了这种极化驱动行为,并与传统的半波板(HWP) gpl进行了比较。利用这一特性,我们提出了一种双堆叠QWP GPL模块,该模块通过极化控制的输入选择和输出滤波实现了九种不同的可变状态。相比之下,基于hwp的模块在等效堆叠条件下仅限于四个焦点状态。QWP GPL模块支持一个紧凑的变焦系统,跨越24.27厘米到无限的连续深度范围,与人类视觉舒适区一致的0.3屈光度间隔。重要的是,对于n个堆叠层,可表示的焦点深度的数量缩放为3n,比HWP系统的2n缩放提供了(1.5)n倍的改进。这可以使用更少的镜头单元实现更精细的深度转换,同时保持紧凑性和光学模块性,建立一个深度切换成像平台,增强下一代XR显示系统的视觉舒适性和深度保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-depth switching by triple wavefront modulation of quarter-waveplate geometric phase lenses for vergence-accommodation-matching extended reality.
We present a novel approach to resolving the vergence-accommodation conflict (VAC) in extended reality (XR) optics by introducing a quarter-waveplate (QWP) geometric phase lens (GPL) capable of triple wavefront modulation-focusing, defocusing, and non-modulating at infinity. This polarization-driven behavior is interpreted using contour trajectories on the Poincaré sphere and compared against conventional half-waveplate (HWP) GPLs. Leveraging this property, we propose a bi-stacked QWP GPL module that enables nine distinct varifocal states through polarization-controlled input selection and output filtering. In contrast, HWP-based modules under equivalent stacking conditions are limited to four focal states. The QWP GPL module supports a compact varifocal system spanning a continuous depth range from 24.27 cm to infinity, with a 0.3-diopter interval aligned with the human visual comfort zone. Importantly, the number of representable focal depths scales as 3n for n stacked layers, offering a (1.5)n-fold improvement over the 2n scaling of HWP systems. This enables finer depth transitions using fewer lens units while retaining both compactness and optical modularity, establishing a depth-switchable imaging platform that enhances visual comfort and depth fidelity in next-generation XR display systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信