单序列蛋白质- rna复合物结构预测的几何注意激活配对的生物语言模型。

IF 7.7
Rahmatullah Roche, Sumit Tarafder, Debswapna Bhattacharya
{"title":"单序列蛋白质- rna复合物结构预测的几何注意激活配对的生物语言模型。","authors":"Rahmatullah Roche, Sumit Tarafder, Debswapna Bhattacharya","doi":"10.1016/j.cels.2025.101400","DOIUrl":null,"url":null,"abstract":"<p><p>Groundbreaking progress has been made in structure prediction of biomolecular assemblies, including the recent breakthrough of AlphaFold 3. However, it remains challenging for AlphaFold 3 and other state-of-the-art deep-learning-based methods to accurately predict protein-RNA complex structures, in part due to the limited availability of evolutionary information related to protein-RNA interactions that are used as inputs to the existing approaches. Here, we introduce ProRNA3D-single, a deep-learning framework for protein-RNA complex structure prediction. Using a geometric attention-enabled pairing of biological language models of protein and RNA, a previously unexplored avenue, ProRNA3D-single predicts interatomic protein-RNA interaction maps, which are then transformed into multi-scale geometric restraints for modeling 3D structures of protein-RNA complexes via geometry optimization. Benchmark tests show that ProRNA3D-single outperforms state-of-the-art methods, including AlphaFold 3, particularly when evolutionary information is limited, and exhibits robustness and performance resilience by attaining state-of-the-art accuracy with only single-sequence input.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101400"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448100/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-sequence protein-RNA complex structure prediction by geometric attention-enabled pairing of biological language models.\",\"authors\":\"Rahmatullah Roche, Sumit Tarafder, Debswapna Bhattacharya\",\"doi\":\"10.1016/j.cels.2025.101400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Groundbreaking progress has been made in structure prediction of biomolecular assemblies, including the recent breakthrough of AlphaFold 3. However, it remains challenging for AlphaFold 3 and other state-of-the-art deep-learning-based methods to accurately predict protein-RNA complex structures, in part due to the limited availability of evolutionary information related to protein-RNA interactions that are used as inputs to the existing approaches. Here, we introduce ProRNA3D-single, a deep-learning framework for protein-RNA complex structure prediction. Using a geometric attention-enabled pairing of biological language models of protein and RNA, a previously unexplored avenue, ProRNA3D-single predicts interatomic protein-RNA interaction maps, which are then transformed into multi-scale geometric restraints for modeling 3D structures of protein-RNA complexes via geometry optimization. Benchmark tests show that ProRNA3D-single outperforms state-of-the-art methods, including AlphaFold 3, particularly when evolutionary information is limited, and exhibits robustness and performance resilience by attaining state-of-the-art accuracy with only single-sequence input.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101400\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448100/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生物分子组装体的结构预测方面取得了突破性进展,包括最近AlphaFold 3的突破。然而,对于AlphaFold 3和其他最先进的基于深度学习的方法来说,准确预测蛋白质- rna复合物结构仍然是一个挑战,部分原因是与蛋白质- rna相互作用相关的进化信息的可用性有限,这些信息被用作现有方法的输入。在这里,我们介绍了ProRNA3D-single,这是一个用于蛋白质- rna复合物结构预测的深度学习框架。利用蛋白质和RNA的生物语言模型的几何注意力配对,这是一个以前未被探索的途径,ProRNA3D-single预测原子间蛋白质-RNA相互作用图,然后将其转化为多尺度几何约束,通过几何优化来建模蛋白质-RNA复合物的3D结构。基准测试表明,ProRNA3D-single优于包括AlphaFold 3在内的最先进的方法,特别是在进化信息有限的情况下,并且仅通过单序列输入即可获得最先进的精度,从而显示出鲁棒性和性能弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-sequence protein-RNA complex structure prediction by geometric attention-enabled pairing of biological language models.

Groundbreaking progress has been made in structure prediction of biomolecular assemblies, including the recent breakthrough of AlphaFold 3. However, it remains challenging for AlphaFold 3 and other state-of-the-art deep-learning-based methods to accurately predict protein-RNA complex structures, in part due to the limited availability of evolutionary information related to protein-RNA interactions that are used as inputs to the existing approaches. Here, we introduce ProRNA3D-single, a deep-learning framework for protein-RNA complex structure prediction. Using a geometric attention-enabled pairing of biological language models of protein and RNA, a previously unexplored avenue, ProRNA3D-single predicts interatomic protein-RNA interaction maps, which are then transformed into multi-scale geometric restraints for modeling 3D structures of protein-RNA complexes via geometry optimization. Benchmark tests show that ProRNA3D-single outperforms state-of-the-art methods, including AlphaFold 3, particularly when evolutionary information is limited, and exhibits robustness and performance resilience by attaining state-of-the-art accuracy with only single-sequence input.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信