{"title":"类hopfield神经元网络平均场方程的普适性。","authors":"Olivier Faugeras, Etienne Tanré","doi":"10.1007/s00285-025-02271-4","DOIUrl":null,"url":null,"abstract":"<p><p>We revisit the problem of characterising the mean-field limit of a network of Hopfield-like neurons. Building on the previous works of Ben Arous and Guionnet we establish for a large class of networks of Hopfield-like neurons, i.e. rate neurons, the mean-field equations on a time interval <math><mrow><mo>[</mo> <mn>0</mn> <mo>,</mo> <mspace></mspace> <mi>T</mi> <mo>]</mo></mrow> </math> , <math><mrow><mi>T</mi> <mo>></mo> <mn>0</mn></mrow> </math> , of the thermodynamic limit of these networks, i.e. the limit when the number of neurons goes to infinity. Here, we do not assume that the synaptic weights describing the connections between the neurons are i.i.d. as zero-mean Gaussians. The limit equations are stochastic and very simply described in terms of two functions, a \"correlation\" function noted <math> <mrow><msub><mi>K</mi> <mi>Q</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>,</mo> <mspace></mspace> <mi>s</mi> <mo>)</mo></mrow> </mrow> </math> and a \"mean\" function noted <math> <mrow><msub><mi>m</mi> <mi>Q</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> . The \"noise\" part of the equations is a linear function of the Brownian motion, which is obtained by solving a Volterra equation of the second kind whose resolving kernel is expressed as a function of <math><msub><mi>K</mi> <mi>Q</mi></msub> </math> . We give a constructive proof of the uniqueness of the limit equations. We use the corresponding algorithm for an effective computation of the functions <math><msub><mi>K</mi> <mi>Q</mi></msub> </math> and <math><msub><mi>m</mi> <mi>Q</mi></msub> </math> , given the weights distribution. Several numerical experiments are reported.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 4","pages":"45"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universality of the mean-field equations of networks of Hopfield-like neurons.\",\"authors\":\"Olivier Faugeras, Etienne Tanré\",\"doi\":\"10.1007/s00285-025-02271-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We revisit the problem of characterising the mean-field limit of a network of Hopfield-like neurons. Building on the previous works of Ben Arous and Guionnet we establish for a large class of networks of Hopfield-like neurons, i.e. rate neurons, the mean-field equations on a time interval <math><mrow><mo>[</mo> <mn>0</mn> <mo>,</mo> <mspace></mspace> <mi>T</mi> <mo>]</mo></mrow> </math> , <math><mrow><mi>T</mi> <mo>></mo> <mn>0</mn></mrow> </math> , of the thermodynamic limit of these networks, i.e. the limit when the number of neurons goes to infinity. Here, we do not assume that the synaptic weights describing the connections between the neurons are i.i.d. as zero-mean Gaussians. The limit equations are stochastic and very simply described in terms of two functions, a \\\"correlation\\\" function noted <math> <mrow><msub><mi>K</mi> <mi>Q</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>,</mo> <mspace></mspace> <mi>s</mi> <mo>)</mo></mrow> </mrow> </math> and a \\\"mean\\\" function noted <math> <mrow><msub><mi>m</mi> <mi>Q</mi></msub> <mrow><mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </mrow> </math> . The \\\"noise\\\" part of the equations is a linear function of the Brownian motion, which is obtained by solving a Volterra equation of the second kind whose resolving kernel is expressed as a function of <math><msub><mi>K</mi> <mi>Q</mi></msub> </math> . We give a constructive proof of the uniqueness of the limit equations. We use the corresponding algorithm for an effective computation of the functions <math><msub><mi>K</mi> <mi>Q</mi></msub> </math> and <math><msub><mi>m</mi> <mi>Q</mi></msub> </math> , given the weights distribution. Several numerical experiments are reported.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 4\",\"pages\":\"45\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02271-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02271-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
我们重新讨论了一类hopfield神经元网络的平均场极限的刻画问题。在Ben Arous和Guionnet先前工作的基础上,我们建立了一类类hopfield神经元网络,即速率神经元,在时间区间[0,T], T > 0上的平均场方程,这些网络的热力学极限,即神经元数量趋于无穷时的极限。在这里,我们不假设描述神经元之间连接的突触权重是零均值高斯分布。极限方程是随机的,非常简单地用两个函数来描述,一个是“相关”函数,记为kq (t, s),一个是“平均”函数,记为mq (t)。方程的“噪声”部分是布朗运动的线性函数,这是通过求解第二类Volterra方程得到的,该方程的解析核表示为kq的函数。给出了极限方程唯一性的构造证明。在给定权重分布的情况下,我们使用相应的算法来有效地计算函数kq和mq。报道了几个数值实验。
Universality of the mean-field equations of networks of Hopfield-like neurons.
We revisit the problem of characterising the mean-field limit of a network of Hopfield-like neurons. Building on the previous works of Ben Arous and Guionnet we establish for a large class of networks of Hopfield-like neurons, i.e. rate neurons, the mean-field equations on a time interval , , of the thermodynamic limit of these networks, i.e. the limit when the number of neurons goes to infinity. Here, we do not assume that the synaptic weights describing the connections between the neurons are i.i.d. as zero-mean Gaussians. The limit equations are stochastic and very simply described in terms of two functions, a "correlation" function noted and a "mean" function noted . The "noise" part of the equations is a linear function of the Brownian motion, which is obtained by solving a Volterra equation of the second kind whose resolving kernel is expressed as a function of . We give a constructive proof of the uniqueness of the limit equations. We use the corresponding algorithm for an effective computation of the functions and , given the weights distribution. Several numerical experiments are reported.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.